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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university‘s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner‘s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK 2- DISCRETE 

MATHEMATICS 
 

Important areas in applied mathematics include linear programming, 

coding theory, theory of computing. The mathematics in these 

applications is collectively called discrete mathematics. One of the first 

things you learn in mathematics is how to count. 

Graphs are mathematical structures that have many applications to 

computer science, electrical engineering and more widely to engineering 

as a whole, but also to sciences such as biology, linguistics, and 

sociology, among others. For example, relations among objects can 

usually be encoded by graphs. Whenever a system has a notion of state 

and state transition function, graph methods may be applicable. Certain 

problems are naturally modeled by undirected graphs whereas others 

require directed graphs 
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UNIT 8: COMBINATROICS – I 

 

STRUCTURE 

8.0 Objectives 

8.1 Introduction 

8.2 Addition And Multiplication Rules 

8.3 Permutation And Combination 

 8.3.1 Counting Words Made With Elements Of A Set S 

Theorem  

 8.3.2 Counting Words With Distinct Letters Made With 

Elements Of A Set S:Theorem 8.3.2[Number Of Injections]  

 8.3.3 Counting Words Where Letters May Repeat 

Theorem 8.3.3[Arrangements]  

8.3.4 Counting Subsets: 

8.3.5 Pascal‘s Identity: 

8.4 Solutions Of Non-Negative Integers 

             8.4.1Theorem [Solutions In ℕ0]  

8.5 Summing Up 

8.6 Keywords 

8.7 Questions for review 

8.8 Suggested Readings 

8.9 Answer to check your progress 

8.0 OBJECTIVES 
 

Understand the addition and product rule. How to apply it. 

Understand the concept of permutation and combination 

Enumerate the concept of solution of non-negative integers 

8.1 INTRODUCTION 
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Combinatorics can be traced back more than 3000 years to India and 

China. For many centuries, 

it primarily comprised the solving of problems relating to the 

permutations and combinations of 

objects. The use of the word ―combinatorial‖ can be traced back to 

Leibniz in his dissertation on 

the art of combinatorial in 1666. Over the centuries, combinatorics 

evolved in recreational pastimes. 

These include the K¨onigsberg bridges problem, the four-colour map 

problem, the Tower of Hanoi, the birthday paradox and Fibonacci‘s 

‗rabbits‘ problem.  

8.2 ADDITION AND MULTIPLICATION 

RULES 
 

Example: Let the cars in New Delhi have license plates containing 2 

alphabets followed by two numbers. What is the total number of license 

plates possible? 

 

Solution: Here, we observe that there are 26 choices for the first 

alphabet and another 26 choices 

for the second alphabet. After this, there are two choices for each of the 

two numbers in the 

license plate. Hence, we have a maximum of 26 × 26 × 10 × 10 = 67, 

600 license plates. 

 

Example: Let the cars in New Delhi have license plates containing 2 

alphabets followed by two numbers with the added condition that ―in the 

license plates that start with a vowel the sum of numbers should always 

be even‖. What is the total number of license plates possible? 

 

Solution: Here, we need to consider two cases. 

Case 1: The license plate doesn‘t start with a vowel. Then using the 

previous example, the 

number of license plates equals 21 × 26 × 10 × 10 = 54600. 

Case 2: The license plate starts with a vowel. Then the number of license 
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plates equals 

5 × 26 × (5 × 5 + 5 × 5) = 6500. 

Hence, we have a maximum of 54600 + 6500 = 61100 license plates. 

 

1. [Multiplication/Product rule] If a task consists of n compulsory parts 

and the i-th part can 

be completed in mi ways, i = 1, 2, . . . , n, then the task can be completed 

in m1m2 · · · mn ways. 

 

2. [Addition rule] If a task consists of n alternative parts, and the i-th 

part can be completed in 

mi ways, i = 1, . . . , n, then the task can be completed in m1 + m2 + · · · + 

mn ways. 

 

Example: A ] How many three digit natural numbers can be formed 

using digits 0, 1, · · · , 9? 

Identify the number of parts in the task and the type of the parts 

(compulsory or alternative). 

Which rule applies here? 

 

Solution:  The task of forming a three digit number can be viewed as 

filling three boxes kept in a 

horizontal row.  

 

 

 

 

There are three compulsory parts.  

Part 1: choose a digit for the leftmost place. 

 Part 2: choose a digit for the middle place.  

Part 3: choose a digit for the rightmost place. 

 

Multiplication rule applies i.e. 9 × 10 × 10. 
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B ] How many three digit natural numbers with distinct digits can be 

formed using digits 1, · · · , 9 

such that each digit is odd or each digit is even? Identify the number of 

parts in the task and 

the type of the parts (compulsory or alternative). Which rule applies 

here? 

 

Solution : The task has two alternative parts.  

Part 1: form a three digit number with distinct digits using digits from {1, 

3, 5, 7, 9}. Using multiplication rule,  that  can be done in 5 × 4 × 3 ways 

Part 2: form a three digit number with distinct digits using digits from {2, 

4, 6, 8}. Observe that Part 1 is a task having three compulsory subparts.  

So, it can be done in 4 × 3 × 2 ways. Since our task has alternative parts, 

addition rule applies. i.e. (5 × 4 × 3) +(4 × 3 × 2) = 84  

 

NOTE: There is another way to formulate the above rules. Let Ai be the 

set of all possible 

ways in which the i-th part can be completed. In this setting, the 

multiplication rule can be re-written as: if A1, A2, . . . , An are nonempty 

finite sets, then |A1 × A2 × · · · × An| = |A1| · |A2| · · · · · |An|. 

 

For the addition rule, note that, as the completion of one part does not 

result in the completion of any other part, A1, A2, . . . , An are disjoint. 

Thus, the addition rule can be re-written as: if A1, A2, . . . , An  are 

disjoint, nonempty finite sets, then |A1 ∪ A2 ∪ · · · ∪ An| = |A1| + |A2| + · · 

· + |An| 

 

8.3 PERMUTATIONS AND 

COMBINATIONS 
 

8.3.1 Counting Words Made With Elements Of A 

Set S 

The first fundamental combinatorial object one commonly studies is a 

function f : [k] → S. The set of all functions from A to B will be denoted 
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by Map (A, B). 

 

Discussion:  

1. Let k ∈ N and let f ∈ Map ([k], S). Then, we may view f as the ordered 

k-tuple (f(1), . . . , f(k)). Thus f is an element of S
k 
= S × S × · · · × S, k 

times. 

 

2. Consider an ordered k-tuple (x1, x2, . . . , xk) of elements of X. If we 

remove the brackets and the commas, then what we get is x1x2 . . . xk, 

which is called a word of length k made with elements of X. Thus, the 

word corresponding to the tuple (a, a, b) is aab. 

 

3. Consider a function f : [3] → {a, b, . . . , z}, defined by f(1) = a, f(2) = 

a and f(3) = b. 

Technically, f = {(1, a), (2, a), 3, b)} and the ordered tuple it gives is (a, 

a, b) and the word related to it is aab. Because of this natural one-one 

correspondence, people use them interchangeably. 

8.3.1 Theorem 

Let n, r ∈ N be fixed. Then |Map([n], [r])| = rn. 

Proof. Forming such a function is a task with n compulsory parts, where 

each part can be done in r many ways. So, by the product rule, the 

number of such functions is rn. 

 

Example: 1. How many functions are there from [9] to [12]? 

Ans: 12
9.
 This task has 9 compulsory parts, where is each part can be 

done in 12 ways. 

 

Discussion: [Use of complements] A simple technique which is used 

very frequently is counting the complement of a set, when we know the 

size of the whole set. For example, consider the following question. 

 

Example: How many 5-letter words can be made using the letters A, B, 

C, D that do not contain the string ―ADC‖? For example, ADCDD, 

BADCB are not counted but DACAD is counted. 
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Solution: Let X  be the set of all 5-letter words that can be made using A, 

B, C, D. Then |X| = 45. 

 

Consider the sets A = {words in X of the form ADC ∗ ∗}, B = {words in X 

of the form ∗ ADC∗}, 

and C = {words in X of the form ∗ ∗ADC}. We see that |A| = |B| = |C| = 

4
2
. As the sets A, B, C 

are disjoint, we see that |A ∪ B ∪ C| = 3 × 4
2
.  

 

Hence our answer to the original question is 4
5
 − 3 × 4

2
. 

8.3.2 Counting Words With Distinct Letters Made 

With Elements Of A Set S: 

 

We now discuss the next combinatorial object namely the one-one 

functions. For n ∈ N, the term 

n-set is used for ‗a set of size n‘. Further, n! = 1 · 2 · · · · · n and by 

convention, 0! = 1. 

 

Discussion. [Injections] Let n, r ∈ N and X be a non-empty set. 

 

1. An injection f : [r] → X can be viewed as an ordered r-tuple of 

elements of X with distinct 

entries. It can also viewed as a word of length r with distinct letters made 

with elements of X. 

The set of all injections from A to B will be denoted by Inj(A, B). 

 

2. If |X| = r, then a bijection f : X → X is called a permutation of X. If X 

= {x1, . . . , xr}, 

then f(x1), . . . , f(xr) is just a rearrangement of elements of X. 

 

3. We define P(n, r) := |Inj([r], [n])|. As a convention, P (n, 0) = 1 for n 

≥ 0. 
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Example: How many one-one maps f : [4] → {A, B, . . . , Z} are there? 

 

Solution: The task of forming such a one-one map has 4 compulsory 

parts: selecting f(1), f(2), f(3) and f(4). 

 Further, f(2) ≠ f(1), f(3) ≠ f(1), f(2) and so on.  

So, by the product rule, the number of one-one map equals 26 · 25 · 24 · 

23 = 26! 22! 

8.3.3 Theorem [Number of injections]  

f : [r] → S] Let n, r ∈ N and |S| = n. Then the number 

P (n, r) = (n− n!r)!. 

 

Proof. The task is to from an r-tuple (f(1), . . . , f(r)) of distinct elements.  

It has r compulsory parts, namely selecting f(1), f(2), . . ., f(r) with the 

condition that f(k) ∉ {f(1), f(2), . . . , f(k − 1)}, for 2 ≤ k ≤ r.  

So, using the product rule, P (n, r) = |Inj ([r], [n])| = n(n − 1) · · · (n − r + 

1) = (n− n!r)!. 

 

8.3.4 Counting Words Where Letters May Repeat 

Consider the word AABAB. We want to give subscripts 1, 2, 3 to the A‘s 

and subscripts 1, 2 to the B‘s so that we create words made with A1, A2, 

A3, B1, and B2. For example, one such word is A2A3B2A1B1. How many 

such words can we create? Fill the following table to get all such words. 

Notice that each of these words become AABAB when we erase the 

subscripts. 
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Proposition [Principle of disjoint pre-images of equal size] Let A, B be 

nonempty finite sets 

and f : A → B be a function satisfying | f 
– 1

 (i)| = k = |f 
– 1

 (j)|, for each i, 

j ∈ B. Then, |A| = k|B|. 

In particular, for k = 1 this principle is also called the principle of 

bijection. 

 

Let n1, . . . , nk ∈ N. Suppose, we are given ni copies of the symbol Ai, for 

i = 1, . . . , k. Then, by 

an arrangement of these n1 + · ·· + nk symbols, we mean a way of 

placing them in a row. It is a 

word made with the symbols A1, . . . , Ak containing the symbol Ai 

exactly ni times, i = 1, . . . , k. For example, ABBAA is an arrangement of 

3 copies of A and 2 copies of B. 

 

Example: How many words of size 5 can be formed using three A‘s and 

two B‘s? 

 

Solution: Let A = {arrangements of A1, A2, A3, B1, B2} and B = {words of 

size 5 which use three 

A‘s and two B‘s}. For each arrangement a ∈ A, define Er(a) to be the 

word in B obtained by 

erasing the subscripts. Then, the function Er : A → B satisfies: 

‗for each b, c ∈ B, b ≠ c, we have |Er−1(b)| = |Er−1(c)| = 3!2!‘. 

Thus, by Proposition [Principle of disjoint pre-images of equal size], 

| |  
| |

    
 

  

    
 

 

Example: Determine the number of ways to place 4 couples in a row if 

each couple sits together. 

 

Solution: Let X  be the set of all arrangements of A, B, C, D. Let Y be the 

set of all arrangements 

of A, A, B, B, C, C, D, D in which both the copies of each letter are 

together.  

For example AACCDDBB ∈ Y but ABBCCDDA ∉ Y .  
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Let Z be the set of all arrangements of Ah, Aw, Bh, Bw, Ch, Cw, Dh, Dw 

in which Ah, Aw are together, Bh, Bw are together, Ch, Cw are together, 

and Dh, Dw are together. 

 

In this setting, we need to find the size of Z.  

So, define Er : Z → Y by Er(z) equals the arrangement obtained by 

erasing the subscripts, namely h and w, that appear in z.  

Note that each y ∈ Y has 24 pre-images in Z.  

Now, define Mrg : Y → X by Mrg(y) equals the arrangement obtained by 

merging the two copies of the same letters into one single letter. 

For example, Mrg(BBAADDCC) = BADC.  

Note that each x in X has exactly one preimage in Y . By applying the 

principle of disjoint pre-images of equal size twice, we see that  

     |Z| = 2
4
|Y | = 2

4
|X| = 2

4
4!,  as |X| = 4!. 

 

8.3.5 Theorem [Arrangements]  

Let n, n1, n2, . . . , nk ∈ N and suppose that we have ni copies of 

the symbol (object) Ai, for i = 1, . . . , k and that n = n1 + · · · + nk. Then 

the number of arrangements of these n symbols is 

  

          
 

 

The formula remains valid even if we take some of the ni’s to be 0. 

 

Proof. Let S be set of all arrangements of the n1 + n2 + · · · + nk symbols 

and let T be the set of 

all arrangements of the symbols A1,1, . . . , A1,n1, A2,1, . . . , A2,n2, . . . , 

Ak,1, . . . , Ak ,nk.  

 

Define a function Er : T → S by Er(t) equals the arrangement obtained by 

erasing the second subscripts that appear in t. Notice that each s ∈ S has 

n1!n2! · · · nk! many pre-images. Hence, by the principle of disjoint pre-

images of equal size, we have |T | = n1! · · · nk!|S|. As |T | = (n1 + n2 + · · · 

+ nk)!, we obtain the desired result. 
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Assume that some ni‘s are 0 (all cannot be 0 as n ∈ N). Then our 

arrangements do not involve the 

corresponding Ai‘s. Hence we can use the argument in the previous 

paragraph and get the number of arrangements. As 0! = 1, we can insert 

some 0! in the denominator. 

Corollary  

Let m, n ∈ N. Then the number of arrangements of m copies of A and n 

copies of B is 

(   ) 

    
 

8.3.4 Counting Subsets: 

As an immediate application of Corollary 8.3.4, we have the following 

result which counts the number of subsets of size k of a given set S. 

Theorem  

 Let n ∈ N and k ∈ {0, 1, . . . , n}. Then the number of subsets of [n] of 

size k is 

  

  (   )  
. 

 

Proof. If k = 0 or n, then we know that there is only one subset of size k 

and the formula also gives us the same value.  

So, let 1 ≤ k ≤ n − 1 and let X be the set of all arrangements of k copies 

of T ‘s and n − k copies of F ‘s.  

For an arrangement x = x1x2 . . . xn ∈ X, define f(x1 . . . xn) = {i | xi = T }, 

i.e., the set of positions where a T appears in x. Then, f is a bijection 

between X and the set of all k-subsets of [n]. Hence, the number of k-

subsets of [n] = |X| = |X| = 
  

  (   )  
.by Corollary  

Discussion:  

1. For n ∈ N and r ∈ {0, 1, . . . , n}, the symbol C(n, r) is used to denote 

the 

number of r-subsets of [n]. The value of C(0, 0) is taken to be 1. Many 

texts use the word 

‗r-combination‘ for an r-subset. 
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2. Using Theorem 8.4.1, we see that for n ∈ N0 and r = 0, 1, . . . , n, C(n, 

r) = 
  

  (   ) 
. Also it follows from the definition that C(n, r) = 0 if n < r, 

and C(n, r) = 1 if n = r. 

3. Let n ∈ ℕ and n1, n2, . . . , nk ∈ ℕ0 such that n = n1 + · · · + nk. Then by 

C(n; n1, . . . , nk) we 

denote the number n! n1!n2!···nk!. By Theorem 8.3.3, it is the number of 

arrangements of n objects where ni are of type i, i = 1, . . . , k. By 

convention, C(0; 0, . . . , 0) = 1. 

4. If n ∈ N and n1, . . . , nk−1 ∈ ℕ0 with n1 + · · · +nk−1 < n, we also use 

C(n; n1, . . . , n k−1) to mean C(n; n1, . . . , nk−1, n − n1 − · · · − nk−1). 

8.3.5 Pascal’s identity: 

Theorem[Pascal] Let n and r be non-negative integers. Then 

C(n, r) + C(n, r + 1) = C(n + 1, r + 1). 

Proof. (This is not the combinatorial proof.) If r > n, then by definition 

all the three terms are zero. So, we have the identity. If r = n, then the 

first and the third terms are 1 and the second term is 0. So, again we have 

the identity. So, let us take r < n. Now we can use the formulas for C(n, 

r), C(n, r + 1) and C(n + 1, r + 1) to verify the identity. 

The combinatorial proof of Theorem 8.5.1: 

Proof. If r > n, then by definition all the three terms are zero. So we have 

the identity. If r = n, 

then the first and the third terms are 1 and the second term is 0. So, again 

we have the identity. So, assume that r < n. 

Let S = {1, 2, . . . , n, n + 1} and A bean (r + 1)-subset of S.  

Then, by definition, there are 

C(n + 1, r + 1) such sets with either n + 1 ∈ A or n + 1 ∉ A. 

 

Note that n + 1 ∈ A if and only if A \ {n + 1} is an r-subset of {1, 2, . . . , 

n}.  

So, the number of (r + 1)-subsets of {1, 2, . . . , n, n + 1} which contain 

the element n + 1 is, by definition, C(n, r). 

Also, n + 1 ∈ / A if and only if A is an (r + 1)-subset of {1, 2, . . . , n}. So, 
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a set A which does not 

contain n + 1 can be formed in C(n, r + 1) ways. 

 

Therefore, using the above two cases, an (r + 1)-subset of S can be 

formed, by definition, in 

C(n, r) + C(n, r + 1) ways. Thus, the required result follows. 

Counting in two ways: 

Let R and C be two nonempty finite sets and take a function f : R × C → 

R. View the function written as a matrix of real numbers with rows 

indexed by R and columns indexed by C. Then the total sum of the 

entries of that matrix can be obtained either ‗by first taking the sum of 

entries in each row and then summing them‘ or ‗by first taking the sum 

of the entries in each column and then summing them‘, i.e., 

∑  (   )  ∑(∑  (   

 

 ∈ 

)

 

 ∈ 

 

(   )∈   

 ∑(∑  (   

 

 ∈ 

)

 

 ∈ 

 

This is known as ‗counting in two ways‘ and it is a very useful tool to 

prove some combinatorial 

identities. 

Example:  [Newton’s Identity] Let n ≥ r ≥ k be natural numbers. Then 

C(n, r)C(r, k) = C(n, k)C(n − k, r − k). In particular, for k = 1, the 

identity becomes rC(n, r) = nC(n − 1, r − 1).  

Solution:  Let us use the method of ‗counting in two ways‘. So, we take 

two appropriate sets R = {all r-subsets of [n]} and C = {all k-subsets of 

[n]} and define f on R × C by f(A, B) = 1 if B ⊆ A, and f(A, B) = 0 if B ⊈ 

A. 

Then given a set A ∈ R, it has C(r, k) many subsets of A. Thus, 

∑ (∑  (   )

 

 ∈ 

)

 

 ∈ 

 ∑  (   )   (   ) (   )

 

 ∈ 

 

Similarly, given a set B ∈ C, there are C(n − k, r − k) subsets of [n] that 

contains B. Hence, 



Notes 

18 

∑ (∑  (   )

 

 ∈ 

)

 

 ∈ 

 ∑  (       )   (   ) (       )

 

 ∈ 

 

Hence, the identity is established. 

Example: Let n, r ∈ N, n ≥ r. Then 

C(1, r) + C(2, r) + · · · + C(n, r) = C(n + 1, r + 1). (5.1) 

The RHS stands for the class F of all the subsets of [n + 1] of size r + 1. 

Let S ∈ F.  

Note that S has a maximum element. A moments thought tells us that the 

maximum element of 

such a set can vary from r + 1 to n + 1. If the maximum of S is r + 1, then 

the remaining 

elements of S have to be chosen in C(r, r) ways. If the maximum of S is r 

+ 2, then the 

remaining elements of S has to be chosen in C(r + 1, r) ways and so on. 

If the maximum 

of S is n + 1, then the remaining elements of S has to be chosen in C(n, r) 

ways. Thus, 

C(n + 1, r + 1) = C(r, r) + C(r + 1, r) + · · · + C(n + 1, r) = C(1, r) + C(2, 

r) + · · · + C(n, r). 

Observe that for r = 1, it gives us 1 + 2 + · · · + n = 
 (     ) 

 
 

 

Check Your Progress 1 

1. State the Addition Rule 

 

 

 

2. What do you understand by injection? 

 

 

 

3. Discuss Arrangements 
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8. 4 SOLUTIONS IN NON-NEGATIVE 

INTEGERS 
 

There are 3 types of ice-creams available in the market: A, B, C. We 

want to buy 5 ice-creams in total. In how many ways can we do that? For 

example, we can buy 5 of type A or we can buy 3 of A and 2 of C. In 

general, suppose we are buying n1 of type A, n2 of type B and n3 of type 

C. Then, we must have n1 + n2 + n3 = 5. So, we want to know the number 

of different possible tuples (n1, n2, n3) satisfying certain condition(s). 

Recall that ℕ0 := ℕ ∪ {0}. A point p = (p1, . . . , pk) ∈ ℕ 
  with p1 + · · · 

+pk = n is called a solution of x1 + · · · +xk = n in non-negative integers 

or a solution of x1 + · · · + xk = n in ℕ0. Two solutions (p1, . . . , pk) and 

(q1, . . . , qk) are said to be the same if pi = qi, for each i = 1, . . . , k. Thus, 

(5, 0, 0, 5) and (0, 0, 5, 5) are two different solutions of x + y + z + t = 10 

in ℕ0. 

8.4.1Theorem [Solutions in ℕ0]  

The number of solutions of x1+· · ·+xr = n in ℕ0 is C(n+r−1, n). 

Proof. Each solution (x1, . . . , xr) may be viewed as an arrangement of n 

dots and r − 1 bars. 

‗Put x1 many dots; put a bar; put x2 many dots; put another bar; 

continue; and end by putting 

x r many dots.‘ 

 For example, (0, 2, 1, 0, 0) is associated to | • •| • || and vice-versa. As 

there are C(n + r − 1, r − 1)  arrangements of n dots and r − 1 bars, we 

see that the number of solutions of x1 + · · · + xr = n in ℕ0 is C(n + r − 1, 

n). 

 

Example: Determine the number of words that can be made using all of 

3 copies of A and 6 

copies of B. 
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Solution:  Note that this number equals the number of arrangements of 3 

copies of A and 6 copies of B. Hence, this number is C(9, 3). 

 

Alternate. First put the three A‘s in row. Now put x1 B‘s to the left of the 

first A, x2 B‘s between 

the first and the second A, x3 B‘s between the second and the third A and 

x4 B‘s after the third A. 

Thus, we need to find number of solutions of x1 + x2 + x3 + x4 = 6 in ℕ0. 

By Theorem 8.4.1, the 

number is C(6 + 4 − 1, 6) = C(9, 6). 

Remark:  The question of finding non-negative integers solutions can 

also be asked in some other styles. 

 

1. In how many ways can we place 6 indistinguishable balls into 4 

distinguishable boxes? 

Taking ni as the number of balls to be put in the i-th box, it is asking us 

to find number of 

solutions of n1 + n2 + n3 + n4 = 6 in ℕ0. 

 

2. A multistep is a generalization of a set where elements are allowed to 

repeat. For example, 

{a, b, a} and {a, a, b} mean the same multisite (imagine carrying all of 

them in a bag). A set is 

also a multistep. How many multisite of size 6 can be made using the 

symbols a, b, c, d? 

Taking na as the number of a‘s to be put in the multistep and so on, it is 

asking us to find 

solutions of na + nb + nc + nd = 6 in ℕ0. 

 

Example 1. Suppose there are 5 kinds of ice-creams available in our 

market complex. In 

how many ways can we buy 15 of them for a party? 

 

Solution: Suppose we buy xi ice-creams of the i-th type. Then, the 
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problem reduces to finding the number of solutions of x1 + · · · + x5 = 15 

in non-negative integers. 

 

Example: [Variables are bounded below by other numbers] How 

many solutions in ℕ0 are there to x + y + z = 60 such that x ≥ 3, y ≥ 4, z ≥ 

5? 

 

Solution: Note that (x, y, z) is such a solution if and only if (x − 3, y − 4, 

z − 5) is a solution to 

x + y + z = 48 in ℕ0. So, the answer is C (50, 2). 

 

Example:   [Reducing a related problem] In how many ways can we 

pick integers x1 < x2 < x3 < x4 <x5, from {1, 2, . . . , 20} so that xi − xi−1 ≥ 

3, i = 2, 3, 4, 5? For example, one such choice is 

(1, 5, 8, 11, 19). 

Solution: For each choice of (x1, x2, x3, x4, x5), note that 

    (x1 − 1) + (x2 − x1) + · · · + (x5 − x4) + (20 − x5) = 19 

i.e. 

    d1 + d2 + d3 + d4 + d5 + d6 = 19 

where d1 ≥ 0, d2 ≥ 3, . . ., d5 ≥ 3 and d6 ≥ 0. So, the problem reduces to 

finding the number of 

solutions of n1 + n2 + · · · + n6 = 7 in ℕ0.. Hence, the answer is C (12, 5). 

 

Alternate. Take an arrangement of fifteen dots (•‘s) and five bars (|‘s) 

such that between two 

consecutive bars, there are at least two dots. The position of the bars in 

each such arrangement 

gives us one solution.  

For example, • • | • • • | • • • | • •| • • • •|• → (3, 7, 11, 14, 19). 

 

Conversely, each solution can be converted into such an arrangement by 

the following method: 

let n1 be the number of dots present to the left of the first bar; n2 be the 

number of dots present 

between the first bar and the second bar and so on. The problem now has 
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been converted to 

count integer solutions of n1 + n2 + n3 + n4 + n5 + n6 = 15, where n1, n6 ≥ 

0, n2, n3, n4, n5 ≥ 2. 

This is the same as the number of solutions of n1 + n2 + n3 + n4 + n5 + n6 

= = 7 in ℕ0. 

 

Check Your Progress 2 

1. Explain solutions in non-negative integers 

 

 

2. Define Multistep. 

 

 

 

8.5 SUMMARY 
 

In the modern era, the subject has developed both in depth and variety 

and has cemented its position as an integral part of modern mathematics. 

Undoubtedly part of the reason for this importance has arisen from the 

growth of computer science and the increasing use of algorithmic 

methods for solving real-world practical problems. These have led to 

combinatorial applications in a wide range of subject areas, both within 

and outside mathematics, including network analysis, coding theory, and 

probability. 

 

8.6 KEYWORDS 
 

1. Non-negative Integer:  A non negative integer is an integer that that 

is either positive or zero. It's the union of the natural numbers and the 

number zero 
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2. Solution: Any and all value(s) of the variable(s) that satisfies an 

equation, inequality, system of equations, or system of inequalities 

3. Element: an element, or member, of a set is any one of the distinct 

objects that make up that set. 

4. Identity: An equation that is true no matter what values are chosen. 

8.7 QUESTIONS FOR REVIEW 
 

1. Determine the number of arrangements of the letters of the word 

ABRACADABARAARCADA. 

2. Determine the number of ways of selecting a committee of m people 

from a group consisting of n1 women and n2 men, with n1 + n2 ≥ m. 

3. If n points are placed on the circumference of a circle and all the lines 

connecting them are joined, what is the largest number of points of 

intersection of these lines inside the circle that can be obtained? 

4. Suppose there are 5 kinds of ice-creams available in our market 

complex. In how many ways can we buy 15 of them for a party? 

5. Determine the number of solutions of x + y + z = 7 with x, y, z ∈ ℕ? 
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8.9 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. State the concept– 8.2 (2) 

2. Explain the concept--- 8.3.2 

3. Explain the Theorem with proof --  8.3.3 

4. Explain the concept--- 8.4 

5. A multistep is a generalization of a set where elements are 

allowed to repeat. For example, 

{a, b, a} and {a, a, b} mean the same multisets (imagine carrying 

all of them in a bag). A set is 

also a multiset. How many multisets of size 6 can be made using 

the symbols a, b, c, d? 

Taking na as the number of a‘s to be put in the multiset and so on, 

it is asking us to find 

solutions of na + nb + nc + nd = 6 in ℕ0. 
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UNIT 9: COMBINATROICS – II 
 

STRUCTURE 

 

9.0 Objectives 

9.1 Binomial Theorem 

9.2 Circular Arrangements 

9.3 Set Partition 

9.4 Pigeonhole Principle 

9.5 Principle Of Inclusion And Exclusion 

9.6 Summary 

9.7 Keywords 

9.8 Questions for review 

9.9 Suggested Readings 

9.10 Answer to check your progress 

9.0 OBJECTIVES 
 

Understand the addition and product rule. How to apply it. 

Understand the concept of permutation and combination 

Enumerate the concept of solution of non-negative integers 

9.1 BINOMIAL THEOREM 
 

For all real numbers a and b and non-negative integers n, 

 

(   )  ∑(  
 )

 

   

       

(   )    

(   )      

(   )            

(   )                  
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Proof. Let P(n) be the statement that for all real numbers a and b, 

(   )  ∑ (  
 ) 

          

 

(   )  ∑(  
 )

 

   

                 ( ) 

   

We want to prove that ‗inductive conclusion‘ (the formula for n = k + 1, 

i.e., the statement P(k + 1)) 

(   )    ∑(  
 )

 

   

                    ( ) 

 

After computing 

(   )    (   )  (   )      ( ) 

 ∑(  
 )       (   )                                      

 

   

 

 ∑(  
 )

 

   

         ∑(  
 )        

 

   

                              

indeed, when we multiply a
r
 b

k−r 
 in line 2 by a, the power of a increases 

by 1 to get a 
r+1

 b 
k−r

 in the first term in line 3. Similarly, when we 

multiply a
 r
 b 

k−r 
by a, we get a 

r
 b 

k+1−r
 in the second term in line 3.  

Now a
 r
 b 

k+1−r
 in line 3 of (3) matches the form of the right-hand side of 

(2). To make the term a 
r+1

 b 
k−r 

in line 3 of (3) also match, we shift the 

variable r down by 1 as follows. Define s = r + 1. Then r = s − 1. 

Moreover, when r is summed from 0 to k, we then have that s is summed 

from 1 to k + 1. So the first term in line 3 of (3) may be rewritten a 

 

 

 (since k − (s − 1) = k + 1 − s). But s is just a name. So we can replace s 

by r to get 
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Thus (3) implies 

 

 

 

combine the two sums on the right-hand side into one sum. But we have 

a slight mismatch in that the first sum is from 1 to k + 1 whereas the 

second sum is from 0 to k. So take out the r = k + 1 case from the first 

sum and we take out the r = 0 case from the first sum from the second 

sum and combine things in the following way 

 

Since 

 

                                               

 Since 1 ≤ r ≤ k 

 

 

Hence 

 

 

 

But noting that (is the r = k + 1 case in the 

sum)   

 (is the r = 0 case in the sum) 

 

This is the desired inductive conclusion (2). By mathematical induction, 

the proof of the Binomial Theorem is complete 
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Corollary: Let n ∈ N. Then the total number of subsets of [n] is 2
n
 

Proof. The number of subsets of size k is C(n, k). Thus the total number 

of subsets is C(n, 0) + C(n, 1) + · · · + C(n, n) which is (1 + 1)
n
 by the 

binomial theorem. 

 

Example :1. Fix m, n, k ∈ N. Then show that  

 

 

 

Solution: First, we give an argument using counting in two ways. We 

can form a committee of size k from a group consisting of m men and n 

women in C(m +n, k) ways. On the other hand, such a committee can be 

formed by taking i many men and n − i many women, where 0 ≤ i ≤ k. In 

this way our answer is 

 

 

 

Hence, they are the same. 

 

Example: Let n > m be natural numbers. Prove that 

 

 

As we know, C(k, 

m)C(n, k) = C(n, m)C(n − m, k − m). 

Hence, 

 

Alternate. Noticing a combinatorial proof is relatively harder. The RHS 

stands for (A, B) 

where A ⊆ [n] of size m and B ⊆ [n] \ A. For each fixed A, we have 

2n−m choices of B, and 
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this is why we have the RHS. On the other hand, we can first select a big 

set C of size |C| ≥ m. 

From this set C, we will take a subset A of size m and we will treat the 

remaining as B. The 

LHS expresses the number of ways in which this task can be done. 

 

Example: Determine the number of words of size 5 using letters from 

‗MATHEMATICIAN‘ (including multiplicity, i.e., you may use M at 

most twice). 

 

Solution: Note that to form such a word, suppose we have selected xm 

many M‘s, xa many A‘s, 

and so on. Then, the problem reduces to finding the number of solutions 

in non-negative 

numbers to xm + xa + xt + xh + xe + xi + xc + xn = 5, with 0 ≤ xm, xt, xi ≤ 2, 0 

≤ xa ≤ 3, 0 ≤ xh, xc, xn, xe ≤ 1. In that case the number of words that can be 

formed from them is C(5; xm, xt, xi, xa, xh, xc, xn, xe). Hence, the total 

number of such  words. 

 

 

 

 

 

9.2 CIRCULAR ARRANGEMENTS 
 

Let S be a nonempty finite multistep. By a circular arrangement of 

elements of S, we mean an arrangement of the elements of S on a circle. 

Two circular arrangements are the same if each element has the same 

‗clockwise adjacent‘ element, i.e., one can be obtained as a rotation of 

the other. By [x1, x2, . . . , xn, x1], we shall denote a circular arrangement, 

keeping the anticlockwise direction in a picture. We use the word 

circular permutation if elements of S are distinct. Thus, exactly two of 

the following pictures represent the same circular permutation. 
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Fig 9.1 Circular permutation 

 

Example: Determine the number of circular permutations of X = {A1, 

A2, A3, A4, A5}. 

 

Ans: 4!. Let B = {circular permutations of X} and A = {permutations of 

X}.  

Now, define f : A → B as f(a) = b if a is obtained by breaking the cycle b 

at some gap and then following in the anticlockwise direction. 

 For example, if we break the leftmost circular permutation in Figure 9.1 

at the gap between A1 and A2, we get [A2, A3, A4, A5, A1]. Notice that |f 

−1(b)| = 5, for each b ∈ B. 

Further if b, c ∈ B, then f −1(b) ∩ f −1(c) = ∅ (why?1). Thus, by the 

principle of disjoint pre-images of equal size, the number of circular 

permutations is 5!/5. 

 

Theorem :[Circular permutations] The number of circular 

permutations of {1, 2, . . . , n} is (n − 1)!. 

Proof.  

Put A = {circular permutations of {1, 2, . . . , n − 1, n}.  

Put B = {permutations of {1, 2, . . . , n −1} 

Define f : A → B as f([n, x1, x2, . . . , xn−1, n]) = [x1, x2, . . . , xn−1].  

Define g : B → A as g([x1, x2, . . . , xn−1]) = [n, x1, x2, . . . , xn−1, n].  

Then, g ◦ f(a) = a, for each a ∈ A and f ◦ g(b) = b, for 

each b ∈ B. Hence, by the bijection principle , f is a bijection. 
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Example :Find the number of circular arrangements of {A, B, B, C, C, D, 

D, E, E}. 

Ans: There is only one A. Cutting A out from a circular arrangement we 

get a unique arrangement of {B, B, C, C, D, D, E, E}. So, the required 

answer is 
  

   
 

 

Definition: 1. Given an arrangement (not a circular arrangement) [X1, . . 

. , Xn] by a rotation R1([X1, . . . , Xn]), in short R1(X1, . . . , Xn), we mean 

the arrangement [X2, . . . , Xn, X1] and 

by R2(X1, . . . , Xn) we mean the arrangement [X3, . . . , Xn, X1, X2].  

On similar lines, we define Ri, i ∈ ℕ and put R0 (X1, . . . , Xn) = [X1, . . . , 

Xn].  

Thus, for each k ∈ ℕ, 

R0(X1, . . . , Xn) = Rkn(X1, . . . , Xn) = [X1, . . . , Xn] 

. 

2. The orbit size of an arrangement [X1, . . . , Xn] is the smallest positive 

integer i which satisfies 

Ri(X1, . . . , Xn) = [X1, . . . , Xn]. In that case, we call 

 

{R0(X1, . . . , Xn), R1(X1, . . . , Xn), . . . , Ri−1(X1, . . . , Xn)} 

 

the orbit of [X1, . . . , Xn]. 

 

Discussion. 1. We have R1(ABCABCABC) = [BCABCABCA], 

R2(ABCABCABC) = 

[CABCABCAB] and R3(ABCABCABC) = [ABCABCABC].  

Thus, the orbit size of [ABCABCABC] is 3. 

 

2. An arrangement of S = {A, A, B, B, C, C} with orbit size 6 is 

[AABCBC]. An arrangement of 

S with orbit size 3 is [ACBACB]. 

 

3. There is no arrangement of S = {A, A, B, B, C, C} with orbit size 2. In 

fact, if there is an 

arrangement with orbit size 2 then it‘s form, by definition, must be 
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[X1X2X1X2X1X2]. Thus 

the element X1 repeats at least 3 times in S, which is not possible. 

 

4. There is no arrangement of {A, A, B, B, C, C} with orbit size 1 or 2 or 

4 or 5. 

 

5. There are 3! arrangements of {A, A, B, B, C, C} with orbit size 3. 

 

6. Take an arrangement of {A, A, B, B, C, C} with orbit size 3. Make a 

circular arrangement by 

joining the ends. How many distinct arrangements can we generate by 

breaking the circular 

arrangement at gaps? 

Ans: 3. They are the elements of the same orbit. 

 

7. Take an arrangement of {A, A, B, B, C, C} with orbit size 6. Make a 

circular arrangement by 

joining the ends. How many distinct arrangements can we generate by 

breaking the circular 

arrangement at gaps? 

Ans: 6. They are the elements of the same orbit. 

 

8. Take an arrangement of n elements with orbit size k. Make a circular 

arrangement by joining the ends. How many distinct arrangements can 

we generate by breaking the circular arrangement 

at gaps? 

Ans: k. They are the elements of the same orbit. 

 

9. If we take the set of all arrangements of a finite multiset and group 

them into orbits (notice that 

each orbit gives us exactly one circular arrangement), then the number of 

orbits is the number 

of circular arrangements. 
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Proposition : The orbit size of an arrangement of an n-multiset is a 

divisor of n. 

 

Proof. Suppose, the orbit size of [X1, . . . , Xn] is k and n = kp + r, for 

some r, 0 < r < k. Then, 

 

Rk(X1, . . . , Xn) = R2k(X1, . . . , Xn) = · · · = Rkp(X1, . . . , Xn) = Rk−r(X1, . . . 

, Xn) 

 

as (p+1)k = pk+k = n−r+k ≡ k−r (mod n).  

Thus, Rk−r(X1, . . . , Xn) = [X1, . . . , Xn], contradicting the minimality of 

k.  

Hence, r = 0. Equivalently, k divides n. 

 

[Binary operations] : Another way to count the number of circular 

arrangements.  

Let [X1, . . . , Xn] and [Y1, . . . , Yn] be two arrangements of an n-multiset. 

Then, in the remainder of this section, we shall consider expressions like 

[X1, . . . , Xn] + [Y1, . . . , Yn].  

By [Ri+Rj]( X1, . . . , Xn), we mean the expression Ri(X1, . . . , Xn)+Rj(X1, 

. . . , Xn). By Ri([X1, . . . , Xn]+ [Y1, . . . , Yn]) we denote the expression 

Ri(X1, . . . , Xn) + Ri(Y1, . . . , Yn). 

 

Example: Think of all arrangements P1, . . . , Pn, of two A‘s, two B‘s and 

two C‘s, where 

    
  

       
. How many copies of [ABCABC] are there in [R0 + · · · + 

R5](P1 + · · · + Pn)? 

 

Solution: Of course 6. R0, R3 take [ABCABC] to itself; R1, R4 will take 

[CABCAB] to [ABCABC]; R2, R5 will take [BCABCA] to [ABCABC]; 

and no other arrangement 

after rotation will give [ABCABC]. 

 

Proposition : Let P1, . . . , Pn be all the arrangements of an m-multiset. 

Then,  
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[R0 + · · · + Rm−1](P1 + · · · + Pn) = m(P1 + · · · + Pn). 

 

Proof. In fact, [R0 + · · · + Rm−1](P1 + · · · + Pn) means, take all 

arrangements and apply all rotations (R0, . . . , Rm−1), and collect all 

resulting arrangements. 

Note that, if we apply R0 on (P1 + · · · +Pn), we get one copy of each 

arrangement. Similarly, if we apply Ri on (P1 +· · · +Pn), we get one copy 

of each arrangement. So, [R0 +· · · +Rm−1](P1 +· · · +Pn) will contain m 

copies of each arrangement. 

 

Proposition: Let P be an arrangement of an m-multiset which has orbit 

size k. Then the 

number of rotations Ri, i = 0, 1, . . . , m−1 which fix P (that is, satisfy 

Ri(P ) = P) is 
 

 
. Furthermore,  

[R0 + R1 + · · · + Rm−1](P ) = 
 

 
 orbit(P ). 

 

Proof. Ask is the orbit size of P , we already know that k divides m. Put p 

= m/k. Then 

R0, Rk, . . . , R(p−1)k fix P . If there is any other s such that Rs fixes P , then 

noting that s is not a multiple of k, let s = kj + r, where 0 < r < k. It now 

follows that Rr(P ) = P .  

This is a contradiction to the fact that k is the orbit size of P. 

The next assertion follows from the fact that 

[R0 + · · · + Rk−1](P ) = [Rk + · · · + R2k−1](P ) = · · · = [R(p−1)k + · · · + 

Rpk−1](P ) 

is the orbit(P ) 

 

Example: Determine the number of circular arrangements of size 5 using 

the alphabets A, B and C. 

Ans: First way: 
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Second way: 

 

 

 

Hence, the number of circular arrangements is 
      

 
    

Check Your Progress 1 

1. State Binomial Theorem 

 

 

2. What is Circular Permutation? 

 

 

 

9.3 SET PARTITIONS 
 

Concept: Let S be a nonempty set and k ∈ N. A partition of S into k 

subsets means a collection of k pairwise disjoint nonempty subsets of S 

whose union is S. For brevity, a partition of S into k subsets is called a k-

partition of S. 

 

Example: (a) Each of the collections {1, 2}, {3}, {4, 5, 6} , {1, 3}, {2}, 

{4, 5, 6} and 

{1, 2, 3, 4}, {5}, {6} is a 3-partition of [6], whereas the collection {{1, 2, 
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3}, {3, 4, 5, 6}} is not 

a partition of any set. 

 

Proposition : Let n, r ∈ N. Then the number of partitions of n into at 

most r parts is equal to the number of partitions of n + r into r parts. 

 

Proof. Given a partition of n into at most r parts, extend it to an r-tuple 

by adding some 0‘s at the right end. For example, if n = 7, r = 4, we 

change the partition (6, 1) which has at most four parts into (6, 1, 0, 0) 

which is a four tuple. This can be done uniquely. Next, add 1 to each 

component of the r-tuple. We get an r-partition of n + r. For example, 

our previous four tuple would now change to (7, 2, 1, 1) which is a 

partition of 11 into four parts. 

Conversely, given an r-partition of n+r, subtract 1 from each component. 

Some of the components might become 0. Truncating them we get a 

partition of n into at most r parts. 

 

Remark [Recurrence for πn(k)] Another way of writing the previous 

result is 

π n(k) = πn−k(0) + πn−k(1) + · · · + πn−k(k) 

and so 

πn(k) = πn−1(k − 1) + πn−k(k). 

 

Definition : Let n, k ∈ N and λ = (n1, n2, · · · , nk) be a k-partition of n. 

 

1. Then, the Ferrer’s Diagram of λ is a pictorial representation of the 

partition created in the 

following way. The i-th part of the partition is represented by putting ni 

equally spaced dots in 

a row. The first row is on the top. The leftmost dots of each row lies in 

the same column. 

2. The (i, j)-hook of the partition consists of the (i, j)-dot along with the 

dots (of i-th row) to the right of it and the dots (of j-th column) below it. 

The hook length is the number of dots in that particular hook. 
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Example :Ferrer‘s diagram for the partitions λ1 = (5, 3, 3, 2, 1, 1), λ2 = 

(6, 4, 3, 1, 1) and 

λ3 = (5, 5, 4, 3, 2) of 15, 15 and 19 are given below. 

 

Suppose that we have a Ferrer‘s diagram of some partition λ of n. 

Observe that the number of dots in the first column of the Ferrer‘s 

diagram is greater than or equal to the number of dots in the second 

column. In general, the number of dots in the i-th column is always 

greater than or equal to the number of dots in the (i + 1)-th column. Thus, 

if we interchange the rows and columns of the Ferrer‘s diagram 

(transposing), then the result is another Ferrer‘s diagram of some 

partition of n. 

This new partition is called the conjugate of λ and is denoted by λ0. A 

partition λ of n is called self-conjugate if λ = λ0. 

For instance, if λ = (5, 3, 3, 2, 1, 1) is a partition of 15, then its conjugate 

is λ0 = (6, 4, 3, 1, 1). The partition (5, 4, 3, 2, 1) is a self-conjugate 

partition of 15. 

 

Remark: Let λ = (n1, . . . , nk) be a partition (of some number). One can 

write the conjugate without drawing the Ferrer‘s diagram. It‘s conjugate 

λ0 = (p1, . . . , pn1) has n1 components and pi = the number of components 

in λ that are at least i. For example, the conjugate of (5, 3, 1, 1) is a 

partition with 5 components (p1, . . . , p5), where p1 = the number of 

components in λ that are at least 

1. So p1 = 4. Now, p2 = the number of components in λ that are at least 2. 

So p2 = 2. Similarly, 

p3 = 2, p4 = 1, and p5 = 1. So λ0 = (4, 2, 2, 1, 1). 

 

Proposition : Let n ∈ ℕ. Then the number of self-conjugate partitions of 

n is the same as the number of partitions of n whose parts are distinct odd 

numbers. 
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Proof. Let λ be a self-conjugate partition of n with k diagonal dots. For 1 

≤ i ≤ k, define li = length of the (i, i)-th hook. Since λ is self-conjugate, 

each li is odd and (l1, . . . , lk) is a strictly decreasing sequence of positive 

integers with l1 + l2 + . . . + lk = n. Hence, from a self-conjugate partition 

λ of n we have got a partition of n whose parts are distinct and odd. 

Conversely, given any partition, say l = (l1, . . . , lk) where parts are 

distinct and odd, we can get a self-conjugate partition by putting l1 dots 

in the (1, 1)-th hook, l2 dots in the (2, 2)-th hook and soon. Since each li 

is odd, the hook is symmetric and as the hook lengths decrease at least by 

2, we see that the corresponding diagram of dots is indeed a Ferrer‘s 

diagram.  

 

Proposition: Let n ∈ ℕ and f(n) be the number of partitions of n in 

which no part is 1. 

Then f(n) = πn − πn−1. 

 

Proof. For n = 1, both the sides of the equality are 0. So assume that n > 

1. 

We shall count the complement. Let λ = (n1, . . . , nk) be a partition of n 

with nk = 1. (Since n > 1, there are at least two parts.) Then, λ gives rise 

to a partition of n − 1, namely (n1, . . . , nk−1). 

Conversely, if µ = (t1, . . . , tk) is a partition of n − 1, then (t1, . . . , tk, 1) is 

a partition of n with last part 1. Hence, the number of partitions of n with 

last part 1 is πn−1(k − 1). 

Thus, using Remark [Recurrence for πn(k)], the number of partitions of 

n in which no part is 1 is πn − πn−1. 

 

9.4 PIGEONHOLE PRINCIPLE 
 

Theorem [Pigeonhole Principle, PHP] Let A be a finite set and let f : A 

→ {1, 2, . . . , n} be a function. Let p1, . . . , pn ∈ ℕIf |A| > p1 + · ·· + pn, 

then there exists i ∈ {1, 2, . . . , n} such that |f −1(i)| > pi. 

Proof. On the contrary, suppose that for each i ∈ {1, 2, . . . , n}, |f −1(i)| 

≤ pi. As A is a disjoint union of the sets f −1(i), we have |A| = Pn i=1 |f 
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−1(i)| ≤ p1 + · ·· + pn < |A|, a contradiction. 

The elements of A are thought of as pigeons and the elements of B as 

pigeon holes; so that the principle is commonly formulated in the 

following forms, which come in handy in particular problems. 

 

Discussion :[Pigeonhole principle (PHP)] 

PHP1. If n + 1 pigeons stay in n holes then there is a hole with at least 

two pigeons. 

PHP2. If kn + 1 pigeons stay in n holes then there is a hole with at least k + 

1 pigeons. 

PHP3. If p1 + · ·· + pn + 1 pigeons stay in n holes then there exists i, 1 ≤ i ≤ 

n such that the i-th hole contains at least pi + 1 pigeons 

 

Example: In a group of 6 people, prove that there are three mutual 

friends or three mutual strangers. 

Solution:  Let a be a person in the group. Let F be the set of friends of a 

and S the set of strangers to a. Clearly |S| + |F| = 5. By PHP either |F| ≥ 

3 or |S| ≥ 3. 

 

Case 1: |F| ≥ 3. If any two in F are friends then those two along with a 

are three mutual friends. Else F is a set of mutual strangers of size at 

least 3. 

 

Case 2: |S| ≥ 3. If any pair in S are strangers then those two along with a 

are three mutual strangers. Else S becomes a set of mutual friends of size 

at least 3 

 

Theorem : Let r1, r2, · · · , rmn+1 be a sequence of mn + 1 distinct real 

numbers. Then, prove that there is a subsequence of m + 1 numbers 

which is increasing or there is a subsequence of n + 1 numbers which is 

decreasing. Does the above statement hold for every collection of mn 

distinct numbers? 

Proof:  Define li to be the maximum length of an increasing subsequence 

starting at ri. If some 

li ≥ m + 1 then we have nothing to prove. So, let 1 ≤ li ≤ m. Since (li) is a 
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sequence of mn + 1 integers, by PHP, there is one number which repeats 

at least n+1 times. Let li1 = li2 = · · · = lin+1 = s, 

where i1 < i2 < · · · < in+1. Notice that ri1 > ri2, because if ri1 < ri2, then ‗ri1 

together with the increasing sequence of length s starting with ri2‘ gives 

an increasing sequence of length s+1. Similarly, ri2 > ri3 > · · · > rin+1 and 

hence the required result holds. 

 

Theorem: Corresponding to each irrational number a, there exist 

infinitely many rational numbers 
 

 
 such that |

     

 
|  

 

  . 

Proof. It is enough to show that there are infinitely many (p, q) ∈ ℤ2 
with 

|qa − p| < 1/q. As a is irrational, for every m ∈ ℕ, 0 < ia – ⌊  ⌋ < 1, for i = 

1, . . . , m + 1. Hence, by PHP there exist i, j with i < j such that 

 

 

 

 

Then, the pair (p1, q1) = (⌊  ⌋ − ⌊  ⌋, j − i) satisfies the required property. 

To generate another pair, find m2 such that 

 

 

 

and proceed as before to get (p2, q2) such that 

 

 

 

Since,  

 

we have 
  

  
≠

  

  
  

 

Theorem:. Let α be a positive irrational number. Then prove that S = {m 

+ nα : m, n ∈ Z} is dense in R. 

Proof. Consider any open interval (a, b). By Archimedean property, there 

exists n ∈ ℕsuch that 

 

 
 < b − a. Observe that 0 < rk = kα − ⌊   ⌋< 1, k = 1, . . . , n + 1. By PHP, 
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some two satisfy 0 < ri − rj < 1/n. Then x = ri − rj = (i − j)α + ⌊   ⌋− ⌊  ⌋ 

∈ S. Let p be the smallest integer so 

that px > a. If px ≥ b, then (a, b) ⊆ (p − 1)x, px and so b − a ≤ x < 
 

 
,  

which is not possible. So, 

px ∈ (a, b) and px ∈ S as well. Thus, (a.b) ∩ S ≠ ∅. 

 

Check Your Progress 2 

1. What is k-partition? 

 

 

2. Discuss Pigeonhole principle. 

 

 

 

9.5 PRINCIPLE OF INCLUSION- 

EXCLUSION 
 

Theorem: [Principle of Inclusion and Exclusion, PIE] Let A1, · · · , 

An be finite subsets of a 

set U. Then, 

 

(1) Or equivalently, the number of elements of U which are in none of 

A1, A2, . . . , An equals 
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Proof. Let  ∉ ⋃   
 
    Then, we show that inclusion of x in some Ai 

contributes (increases the value) 1 to both sides of Equation (1). So, 

assume that x is included only in the sets A1, · · · , Ar. Then, the 

contribution of x to |Ai1 ∩ · · · ∩ Aik| is 1 if and only if {i1, . . . , ik} ⊆ {1, 

2, . . . , r}. Hence, the contribution of x to ∑ |              
                 

    |   is C(r, k). Thus, the contribution of x to the right hand side of 

Equation (6.1) is 

C(r, 1) − C(r, 2) + C(r, 3) − · · · + (−1) 
r+1

 C(r, r) = 1. 

The element x clearly contributes 1 to the left hand side of Equation (1) 

and hence the required result follows.  

 

Example : How many integers between 1 and 10000 are divisible by 

none of 2, 3, 5, 7? 

Ans: For i ∈ {2, 3, 5, 7}, let Ai = {n ∈ N|n ≤ 10000, i|n}. Therefore, the 

required answer is 

10000 − |A2 ∪ A3 ∪ A5 ∪ A7| = 2285 

 

Definition  [Euler Totient Function]  

For a fixed n ∈ ℕ, the Euler’s totient function is defined as ϕ(n) = |{k ∈ 

ℕ: k ≤ n, gcd(k, n) = 1}|. 

Thus, ϕ(n) is the number of natural numbers less than or equal to n and 

relatively prime ton. 

For instance, ϕ(1) = 1, ϕ(2) = 1, ϕ(3) = 2, ϕ(4) = 3, ϕ(12) = 4, etc. 

 

Definition [Derangement] A derangement of objects in a finite set S is 

a permutation/arrangement σ on S such that for each x, σ(x) ≠ x. The 

number of derangements of {1, 2, . . . , n} is denoted by Dn with the 

convention that D0 = 1. 

For example, 2, 1, 4, 3 is a derangement of 1, 2, 3, 4, but 2, 3, 1, 4 is not 
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a derangement of 1, 2, 3, 4. If a sequence (xn) converges to some limit `, 

we say that xn is approximately ` for large values of n, and write xn ≈ l. 

 

CHECK YOUR PROGRESS 3 

1. State the Principle of Inclusion-Exclusion. 

 

 

 

2. Define the following terms: 

a. Euler Totient Function 

b. Derangement 

 

 

 

9.6 SUMMARY 
 

The Pigeonhole Principle is an obvious but powerful tool in solving 

many combinatorial problems 

 

9.7 KEYWORDS 
 

1. Finite Subset: A finite set with n elements has 2
n
 distinct subsets. 

Any subset of a finite set is finite. 

2. Principle: a fundamental truth or proposition that serves as the 

foundation for a system of belief or behaviour or for a chain of 

reasoning. 

3. Irrational number:  An Irrational Number is a real number that 

cannot be written as a simple fraction. Irrational means not Rational. 

4. Open Interval : is an interval that does not include its end points. 
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9.8 QUESTIONS FOR REVIEW 
 

1.Let n > m be natural numbers. Prove that  

 

 

2. Let us assume that any two garlands are same if one can be obtained 

from the other by rotation. Then, determine the number of distinct 

garlands that can be formed using 6 flowers, in the following cases. 

(a) The flowers can have colors ‗red‘ or ‗blue‘. 

(b) The flowers can have the colors ‗red‘, ‗blue‘ or ‗green‘. 

3. Prove that there exist two powers of 3 whose difference is divisible by 

2021 

4. Suppose that f(x) is a polynomial with integer coefficients. If f(x) = 5 

for three distinct integers, 

then for no integer x, f(x) can be equal to 4. 

5. Suppose that f(x) is a polynomial with integer coefficients. If (a) f(x) = 

14 for three distinct integers, then for no integer x, f(x) can be equal to 

15.  

(b) f(x) = 11 for five distinct integers, then for no integer x, f(x) can be 

equal to 9. 
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9.10 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Explain the concept – 9.1 

2. Explain the concept with examples--- 9.2 

3. State the concept --  9.3.1 

4. Explain the Theorem, discussion and example--- 9.4 

5. State the theorem and proof --9.5 

6. Provide the definition (a) –9.5.1  & (B) – 9.5.2 
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UNIT 10: NUMBER THEORY 
 

STRUCTURE 

10.0 Objectives 

10.1 The Division Algorithm 

10.2 Greatest Common Divisor 

     10.2.1 Theorem 

    10.2.2 Theorem  [Bezout‘s identity]  

10.3 Least Common Multiple 

    10.3.1 Theorem 

10.4 Prime Number 

      10.4.1 Theorem (Fundamental Theorem of Arithmetic) 

       10.4.2 Theorem There Are Infinitely Many Primes. 

      10.4.3 Theorem  

10.5 Summary 

10.6 Keywords 

10.7 Questions for review 

10.8 Suggested Readings 

10.9 Answer to check your progress 

10.0 OBJECTIVES 
 

Study the division algorithm 

Understand the concept of greatest common divisor 

Understand the meaning of prime numbers 

10.1 THE DIVISION ALGORITHM 
 

Theorem 10.1.1  If a and b are integers and b 6= 0, then there is a 

unique pair of integers q and r, such that a = qb + r and 0 ≤ r < |b|. 

Proof. We need to prove two things: that there is some such pair q, r 

(existence) and that this pair is unique (uniqueness). 

Let‘s begin with existence. First we show that there is a pair q, r ∈ Z that 

satisfies a = qb + r for some r ≥ 0.  
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Take q = −|ab|/b and r = a + |ab|. Since |b| ≥ 1, it holds that r ≥ 0. Now 

we need to show that such q, r ∈ ℤ exist with r in addition being smaller 

than |b|.  

For this, consider the set S of all r ∈ ℕ that satisfy a = qb + r for some q 

∈ Z. We‘ve just shown that S is nonempty, so it must have a smallest 

element, call it r0. We have a = q0b + r0. If r0 < |b| we‘re done.  

Otherwise, we have a = (q0b + |b|) + (r0 − |b|), which means that 

r0 − |b| is a smaller element of S than r0, leading to a contradiction. This 

completes the existence proof. 

To prove uniqueness, suppose that a = qb + r = sb + t, with 0 ≤ r, t < |b|.  

Thus (q − s)b + (r − t) = 0. Since 0 ≤ r, t < |b|, we have |r − t| < |b|, 

hence |(q − s)b| < |b| and |q − s| < 1. Since q and s are integers, this 

implies q = s. From this we have r = t and the uniqueness proof is 

complete 

The Well-Ordering Principle. In proving the division algorithm, we 

considered a certain set S ⊆ N and argued that since it is nonempty, it 

must have a smallest element. Why is this true? As with induction, we 

accept this proposition as an axiom. In general, the ―well-ordering 

principle‖ states that any nonempty set of natural numbers must have a 

smallest element.  

Remainders 

A more algorithmic view of Theorem 10.1.1 is as follows: If we divide 

the equation 

a = qb + r  by b we get 

 

 
   

 

 
 

Since 0 ≤ r < |b|, we get that if b > 0, then 0 ≤ 
 

 
<1and thus q = ⌊

 

 
⌋ the 

greatest integer less than or equal to a/b. If b < 0, then 0 ≥ r b > −1 and 

thus q =  a b , the least integer greater or equal to a/bThis can be used to 

calculate q, from which we can derive r.  
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In Theorem 10.1.1, we call q the quotient and r the remainder. We use 

the notation r = a rem b to denote that r is the remainder when a is 

divided by b. There is no need for a special notation for quotient, since 

we can just ⌊
 

 
⌋ and ⌈

 

 
⌉  depending on the sign of b. 

Definition: If a and b are such that a rem b = 0 we say that a is a 

multiple of b, or that b divides a (or is a divisor of a). Note that this holds 

when there exists some integer q, such that a = qb. In particular, every 

integer divides 0, and every integer is a multiple of 1. When b divides a 

we write b|a, and when b does not divide a we write b∤ a. 

Definition: An integer u is called a linear combination of a set of 

integers a1, a2, . . . , an 

if and only if there exist integer coefficients c1, c2, . . . , cn that satisfy 

  ∑    

 

   

 

Theorem 10.1.2. Properties of divisibility: 

(a) If b|a and c|b then c|a.  

(b) If b|a and a ≠ 0 then |b| ≤ |a|. 

(c) If b divides each of a1, a2, . . . , an, then b divides all linear 

combinations of a1, a2, . . . , an. 

(d) a|b and b|a if and only if a = ±b. 

 

Proof. We prove the properties in turn: 

(a) Since b|a, there exists an integer q, such that a = qb. Similarly, there 

exists an integer r, such that b = rc. Thus a = qb = qrc. Since qr is an 

integer, it holds that c|a. 

(b) Since b|a, there exists an integer q, such that a = qb. This implies |a| 

= |q| · |b|. Assume for the sake of contradiction that a 6= 0 but |b| > |a|. 

Then |q|·|b| < |b|. Since |b| > |a| > 0, we can divide by |b| to get |q| < 1, 

implying q = 0. Thus a = qb = 0, which is a contradiction. 

(c) Consider a linear combination   ∑     
 
    Since b|ai, there exists 

an integer qi, such that ai = qib, for all 1 ≤ i ≤ n. Thus 
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Since ∑     
 
    is an integer, we have b|u.  

(d) For the ―if‖ statement, note that if a = ±b then b = qa and a = qb, for 

q = ±1, so a|b and b|a. To prove the ―only if‖ statement, assume that a|b 

and b|a. This implies the existence of integers q and r, such that b = qa 

and a = rb. Thus b = qrb. If b = 0 then a = 0 and the claim that a = ±b 

holds. Otherwise we can divide by b to get qr = 1. Note that in this case 

q, r ≠ 0. Part (b) of the 

theorem implies that |q| ≤ 1 and |r| ≤ 1. Thus q, r = ±1 and the claim that 

a = ±b follows 

  

10.2 GREATEST COMMON DIVISORS 
 

If d|a and d|b then d is a common divisor of a and b. For example, 1 is a 

common divisor of any pair a, b. If a and b are not both 0 then, by 

Theorem 10.1.2 (b), anycommon divisor of a and b is not greater than 

max(|a|, |b|). Thus the set of common divisors of a and b has a largest 

element, called the greatest common divisor of a and b, or gcd(a, b). This 

is the integer d that satisfies the following two criteria: 

• d|a and d|b. 

• If c|a and c|b then c ≤ d. 

OR 

 

Let a and b be two nonzero integers. Then the set S of their common 

positive divisors is nonempty and finite. Thus, S contains its greatest 

element. This element is called the greatest common divisor of a and b 

and is denoted by gcd(a, b). The gcd is also called the highest common 

factor 

Note that when a = b = 0, there is no greatest common divisor, since any 

integer divides 0. When a and b are not both 0, we often want to compute 

gcd(a, b) efficiently. 

Note that the set of divisors of a and −a is the same, and similarly for b 

and −b. Furthermore, if a = 0 then gcd(a, b) = b, and if a = b then gcd(a, 

b) = a = b. Thus it suffices to concentrate on the case a > b > 0, without 
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loss of generality. 

Since 1 ≤ gcd(a, b) ≤ b, we can just test all integers between 1 and b and 

choose the largest one that divides both a and b. However, there is a 

much more efficient way to find greatest common divisors, called 

Euclid‘s algorithm. This algorithm, one of the earliest in recorded 

history, is based on the following lemma. 

 

Lemma If a = qb + r then gcd(a, b) = gcd(b, r). 

 

Proof. By Theorem 10.1.2 (c), all common divisors of b and r also divide 

a, since a is a linear combination of b and r. Thus a common divisor of b 

and r is also a common divisor of a and b. Similarly, since r = a − qb, a 

common divisor of a and b also divides r, so it is a common divisor of b 

and r. Thus a, b and b, r have the same set of common divisors, and in 

particular the same greatest common divisor. 

 

With this lemma in our toolbelt, Euclid‘s algorithm is easy to describe. 

To find gcd(a, b), use the division algorithm (Theorem 4.1.1) to 

represent a = qb + r, where 0 ≤ r < b. (Remember that we are assuming 

that a > b > 0.) If r = 0 then b|a and gcd(a, b) = b. Otherwise gcd(a, b) = 

gcd(b, r) and b > r > 0. We can thus repeat the above procedure 

recursively with the pair b, r. Every recursive call strictly reduces both 

numbers in the pair, so after at most b steps the algorithm will terminate 

with a valid greatest common divisor of a and b.  

Greatest common divisors and linear combinations 

10.2.1 Theorem 

For two integers a and b that are not both 0, gcd(a, b) is a linear 

combination of a and b.  

Proof. As above, we can concentrate on the case a > b > 0. The proof 

proceeds bystrong induction on the value of a. In the base case, a = 2, b 

= 1, and gcd(a, b) =1 = 0 · a + 1 · b. Assume that the theorem holds for 

all pairs a, b with 0 < b < a ≤ k. 

Consider a pair a’, b’ with 0 < b’ < a’ = k + 1. If b’|a’then gcd(a’, b’) = 

b0 and the theorem trivially holds. Otherwise use the division algorithm 
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to express a’ = qb’ + r, where 0 < r < b0. By the induction hypothesis, 

there exist coefficients u and v, such that gcd(b0, r) = ub0 + vr.  

 

Lemma 10.2.1shows that gcd(a’, b’) = gcd(b’, r), therefore 

gcd(a’, b’) = ub’ + vr = ub’+ v(a’ – qb’) = va’ + (u − vq)b’. This shows 

that gcd(a’, b’) 

is a linear combination of a0 and b0 and completes the proof by 

induction.\ 

 

Corollary: An integer z is a linear combination of a and b if and only if 

it is a multiple of gcd(a, b). In particular, gcd(a, b) is the least positive 

linear combination of a and b. 

Proof. By 10.1.2 (c), since gcd(a, b) divides both a and b, it divides any 

linear combination z of a and b, and thus z is a multiple of gcd(a, b). On 

the other hand, we know by Bezout‘s identity that there are coefficients u 

and v, such that gcd(a, b) = ua + vb, so if z = c · gcd(a, b), then z = c(ua + 

vb) = (cu)a + (cu)v. 

 

 

10.2.2 Theorem  [Bezout’s identity]  

´ Let a and b be two nonzero integers and let d = gcd(a, b). Then there 

exist integers x0, y0 such that d = ax0 + by0. 

 

Proof. Consider the set S = {ax + by : x, y ∈ Z} ∩ N. Then, either a ∈ S 

or −a ∈ S. Thus, S is a 

nonempty subset of N. By the well ordering principle, S contains its least 

element, say d. As d ∈ S, we have d = ax0 + by0,  for some x0, y0 ∈ Z. We 

show that d = gcd(a, b). 

By the division algorithm, there exist integers q and r such that a = dq + 

r, with 0 ≤ r < d. If 

r > 0, then 

r = a − dq = a − q(ax0 + by0) = a(1 − qx0) + b(−qy0) ∈ {ax + by : x, y ∈ 

Z}. 
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In this case, r is a positive integer in S which is strictly less than d. This 

contradicts the choice of d as the least element of S.  

Thus, r = 0. Consequently, d|a. Similarly, d|b. Hence d ≤ gcd(a, b). 

 

Now, gcd(a, b)|a and gcd(a, b)|b. Since d = ax0 + by0 for some x0, y0 ∈ 

Z, we have gcd(a, b)|d. 

That is, d = k × gcd(a, b) for some integer k. However, both gcd(a, b) 

and d are positive. Thus k is a positive integer. Hence d ≥ gcd(a, b). 

Therefore, d = gcd(a, b). 

We prove three useful corollaries to B´ ezout‘s identity. 

 

Corollary. Let a, b ∈ Z and let d ∈ N. Then, d = gcd(a, b) if and only if 

d|a, d|b, and each common divisor of a and b divides d. 

Proof. Suppose d = gcd(a, b). Then d|a and d|b. By B´ ezout‘s identity, d 

= ak + bm for some k, m ∈ Z. 

Thus, any common divisor of a and b divides d = gcd(a, b). 

Conversely, suppose d|a, d|b and each common divisor of a and b 

divides d. Since d is a common divisor of a and b, by what we have just 

proved, d| gcd(a, b). Further, gcd(a, b) is a common divisor of a and b; 

so, by assumption gcd(a, b)|d. So, d = gcd(a, b). 

 

Corollary. Let a, b be nonzero integers. Then gcd(a, b) = 1 if and only if 

there exist integers 

x0 and y0 such that ax0 + by0 = 1. 

 

Proof. If gcd(a, b) = 1, then by B´ ezout‘s identity, there exist integers x0 

and y0 such that ax0+by0 = 1. 

Conversely, suppose there exist integers x0 and y0 such that ax0 + by0 = 1. 

If gcd(a, b) = k, then k is a positive integer such that k|1. It follows that k 

≤ 1; consequently, k = 1. 

 

Corollary. Let n1, . . . , nk be positive integers which are pairwise 

coprimes. If a ∈ Z is such that n1|a, . . . , nk|a, then n1 · · · nk|a. 

Proof. The positive integers n1, . . . , nk are pair wise coprimes means 
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that if i 6= j, then gcd(ni, nj) = 1. 

Let a ∈ Z be such that n1|a, . . . , nk|a. We show by induction that n1 · · · 

nk|a. For k = 2, it is given that n1|a, n2|a and gcd(n1, n2) = 1. By B´ 

ezout‘s identity, there exist x, y ∈ Z such that n1x+n2y = 1. 

Multiplying by a, we have a = an1x + an2y = n1n2 ( (
 

  
)   (

 

  
)). 

Since n2|a and n1|a, we see that 
 

  
 , 

 

  
 ∈ Z so that ( (

 

  
)   (

 

  
)) ∈ Z. 

Hence n1n2|a. Assume the induction hypothesis that the statement is true 

for k = m. Let each of n1, . . . , nm+1 divide a and that they are pairwise 

coprimes. Let n1 · · · nm = `. Then gcd(l,  nm+1) = 1. By the induction 

hypothesis, l |a. By the basis case, (k = 2 as proved), we conclude that l, 

nm+1|a. That is, n1 · · · nm+1|a. ( (
 

  
)   (

 

  
)). 

Since n2|a and n1|a, we see that 
 

  
 , 

 

  
 ∈ Z so that ( (

 

  
)   (

 

  
)). ∈ 

Z. Hence n1n2|a. 

Assume the induction hypothesis that the statement is true for k = m. Let 

each of n1, . . . , nm+1 

divide a and that they are pairwise coprimes. Let n1 · · · nm = l. Then 

gcd(l, nm+1) = 1.  

By the induction hypothesis,  l |a. By the basis case, (k = 2 as proved), 

we conclude that ` nm+1|a. That is, n1 · · · nm+1|a. 

 

The division algorithm helps to algorithmically compute the greatest 

common divisor of two nonzero integers, commonly known as the 

Euclid‘s algorithm. 

 

Let a, and b be nonzero integers. By the division algorithm, there exists 

integers q and r with 0 ≤ r < |b| such that a = |b|q + r. We apply our 

observation that a common divisor of two integers divides their gcd. 

Now, gcd(|b|, r) divides both |b| and r; hence it divides a. Again, gcd(|b|, 

r) divides both a and |b|. Hence gcd(|b|, r)| gcd(a, |b|). 

Similarly, with r = a − |b|q, we see that gcd(a, |b|) divides both a and 

|b|; hence gcd(a, |b|)|r. 
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Consequently, gcd(a, |b|)| gcd(|b|, r). 

Further, the gcd of any two integers is positive. Thus,  

      gcd(a, b) = gcd(a, |b|).  

So, we obtain 

     gcd(a, b) = gcd(a, |b|) = gcd(|b|, r). 

Euclid‘s algorithm applies this idea repeatedly to find the greatest 

common divisor of two given nonzero integers, which we now present. 

 

Euclid’s algorithm 

Input: Two nonzero integers a and b; Output: gcd(a, b). 

   a  =  b q0 + r0  with  0 ≤ r0 < b 

   b  =  r0 q1 + r1  with  0 ≤ r1 < r0 

  r0  =  r1 q2 + r2  with  0 ≤ r2 < r1 

  r1  =  r2 q3 + r3   with  0 ≤ r3 < r2 

    ⁞ 

  r l−1  =  r l q l+1 + r l+1 with  0 ≤ r l+1< r l 

  r l  =  r l+1 ql+2   

       gcd(a, b)  =  r l+1 

 

The process will take at most b − 1 steps as 0 ≤ r0 < b. Also, note that r 

l+1can be expressed in the form r l+1= a x0 + b y0 for integers x0, y0 using 

backtracking.  

That is, 

 

r l+1 = r l-1 − r l q l+1 = r l-1 − q l+1 (r l-2 − r l-1 q l ) = r l-1 (1 + ql+1 ql`) − ql+1  

r l-2 = · · · 

 

Example 

 We apply Euclid‘s algorithm for computing gcd(155, −275) as follows. 

−275 = (−2) · 155 + 35 (so, gcd(−275, 155) = gcd(155, 35)) 

155 = 4 · 35 + 15 (so, gcd(155, 35) = gcd(35, 15)) 

35 = 2 · 15 + 5 (so, gcd(35, 15) = gcd(15, 5)) 

15 = 3 · 5 (so, gcd(15, 5) = 5). 

To write 5 = gcd(155, −275) in the form 155x0 + (−275)y0, notice that 

5 = 35− 2· 15 = 35− 2(155− 4· 35) = 9· 35− 2· 155 = 9(−275 + 2· 155)− 
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2· 155 = 9· (−275) + 16· 155. 

Also, note that 275 = 5 · 55 and 155 = 5 · 31 and thus, 5 = (9 + 31x) · 

(−275) + (16 + 55x) · 155, for all x ∈  Z. Therefore, we see that there are 

infinite number of choices for the pair (x, y) ∈  ℤ2
, for which d = ax + by 

 

Check Your Progress1 

1. Explain the Well-ordering Principle 

 

 

2. Explain the concept of Greatest Common Divisor 

 

 

 

10.3 LEAST COMMON MULTIPLE 
 

Definition. The least common multiple of integers a and b, denoted as 

lcm(a, b), is the smallest positive integer that is a multiple of both a and 

b. 

Lemma 10.3.1 . Let a, b ∈ Z and let ` ∈ N. Then, ` = lcm(a, b) if and 

only if a|`, b|` and ` divides each common multiple of a and b. 

Proof. Let ` = lcm(a, b). Clearly, a|` and b|`. Let x be a common multiple 

of both a and b. If ` - x, then by the division algorithm, x = ` · q + r for 

some integer q and some r with 0 < r < `. Notice that a|x and a|`. So, a|r. 

Similarly, b|r. That is, r is a positive common multiple of both a and b 

which is less than lcm(a, b). This is a contradiction. Hence, ` = lcm(a, b) 

divides each common multiple of a and b. 

 

Conversely, suppose a|l, b|l and ` divides each common multiple of a 

and b. By what we have just proved, lcm(a, b)|`. Further, lcm(a, b) is a 

common multiple of a and b. Thus l| lcm(a, b). We conclude that l = 

lcm(a, b). 
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10.3.1 Theorem 

Let a, b ∈ N. Then gcd(a, b) · lcm(a, b) = ab. In particular, lcm(a, b) = 

ab if and only if gcd(a, b) = 1. 

 

Proof. Let d = gcd(a, b). Then a = a1d and b = b1d for some a1, b1 ∈ N. 

Further, 

     ab = a1d b1d = (a1b1d) · gcd(a, b). 

Thus, it is enough to show that lcm(a, b) = a1b1d. 

Towards this, notice that a1b1d = ab1 = a1b, that is, a|a1b1d and 

b|a1b1d. Let c ∈ N be any common multiple of a and b. Then 
 

 
 , 

 

 
 ∈ ℤ. 

Further, by B´ ezout‘s identity, d = as + bt for some 

s, t ∈ Z. So 

 

 

 

Hence a1b1d|c. That is, a1b1d divides each common multiple of a and b. 

By Lemma 10.3.1 , a1b1d = lcm(a, b). 

 

10.4 PRIME NUMBERS 
 

Definition: An integer p > 1 is said to be prime if its only positive 

divisors are 1 and p itself. All other integers greater than 1 are called 

composite. A composite number n can be written as a product n = ab of 

two strictly smaller numbers 1 < a, b < n. Note that, by convention, 1 is 

neither prime nor composite. 

 

Here are all primes below 100: 

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 

79, 83, 89, 97. 

 

Given a prime p and another integer a, either a is a multiple of p or 

gcd(p, a) = 1. Indeed, gcd(p, a) divides p, so it must be either 1 or p, and 
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since gcd(p, a) also divides a then either gcd(p, a) = 1 or a is a multiple 

of p. This can be used to prove a very important property of primes: 

 

Theorem 10.4.1. Let p be a prime. 

(a) Given two integers a and b, if p|ab then either p|a or p|b. 

(b) Given k integers a1, a2, . . . , ak, if  |∏   
 
   then p|ai for some 1 ≤ i 

≤ k. 

 

Proof. 

(a) If p|a we are done. Otherwise gcd(p, a) = 1 and by Bezout‘s identity 

there exist linear coefficients u and v for which 1 = ua + vp. Multiplying 

both sides by b we get b = uab + vpb. Since p divides ab, p divides the 

whole sum uab + vpb. 

Therefore p|b. 

(b) The proof proceeds by induction. The case k = 1 is trivial and k = 2 is 

handled in part (a). So we assume that the claim holds for some k > 1 

and prove that it also holds for k + 1. Given that  |∏   
   
    we put b = 

∏   
 
    Since,  p|ba k+1 part (a) implies that either p|ak+1 or p|b. In both 

cases the claim holds, in the latter case by the induction hypothesis. This 

completes the proof by induction. 

 

10.4.1 Theorem (Fundamental Theorem of 

Arithmetic).  

Every positive integer can 

be represented in a unique way as a product of primes, n = p1p2 · · · pk 

(p1 ≤ p2 ≤ . . . ≤ pk). 

Proof. We first prove existence and then uniqueness. Actually, we 

already proved existence in one of the previous lectures as an illustration 

of strong induction, but give the prove here again for completeness. So, 

to prove that every integer can be represented as a product of primes we 

use strong induction. The base case n = 1 holds because the empty 

product, as we previously discussed, is defined to equal 1. 

The induction hypothesis assumes that for some n > 1, all positive 
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integers k < n can be represented as a product of primes. If n is prime, 

then it is trivially a product of primes.  

 

Otherwise it can be written as n = ab, for 1 < a, b < n. By the induction 

hypothesis, both a and b are products of primes, so their product n is also 

a product of primes. This proves existence. 

The proof that the above representation is unique  proceeds by 

contradiction. Assume then that there exists some positive integer that 

can be represented as a product of primes in (at least) two ways. By the 

well-ordering principle, there is a smallest such integer n. It holds that n 

= p1p2 · · · pk = q1q2 · · · ql, where p1 ≤ p2 ≤ . . . ≤ pk, q1 ≤ q2 ≤ . . . ≤ ql, and 

pi ≠ qi for some i. By Theorem 10.3.1(b), since pi|q1q2 · · · ql, there must 

exist some qj for which pi|qj. Since qj is prime and pi > 1, this can only 

occur when pi = qj. Thus we can eliminate pi and qj from the equation 

p1p2 · · · pk = q1q2 · · · ql and get two distinct representations of the 

positive integer number n/pi as a product of primes. This contradicts the 

assumption that n is the smallest positive integer with this property, and 

concludes the proof of uniqueness. 

 

The infinity of primes 

Here is another fundamental result with a proof from Euclid‘s Elements: 

 

10.4.3 Theorem There Are Infinitely Many Primes. 

Proof. Assume for the sake of contradiction that there is only a finite set 

of primes, 

p1, p2, . . . , pn. Consider the number p = p1p2 . . . pn + 1. 

By Theorem 10.3.2, p has a prime divisor, which has to be pi, for some 1 

≤ i ≤ n. Since pi divides both p and p1p2 . . . pn, it also divides p − p1p2 . . 

. pn = 1. However, this is impossible since pi > 1. This contradiction 

proves the theorem. 

Let‘s get some more mileage out of Euclid‘s proof. The results below 

show that not only do the primes never stop, but the number of primes p 

≤ x is at least a certain natural function of x, namely at least log log x. 

(Here the base of the logarithm is 2.) 
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10.4.2 Theorem  

The n-th prime pn satisfies pn ≤      
for all n ≥ 1. 

Proof. We proceed using strong induction. For the base case, the first 

prime is 2 =    
. Assume that the claim holds for all primes p1 through 

pk. Consider p = p1p2 . . . pk +1. As in the above proof, p has a prime factor 

that is not one of the first k primes. This prime factor is thus at least as 

large as pk+1, which implies 

 

 

 

 

 

 

 

This is precisely the induction step we needed, and concludes the proof 

by strong induction. Denote by π(x) the number of primes p ≤ x. 

 

Corollary: For x ≥ 2, π(x) ≥  ⌊         ⌋ + 1. 

Proof. Plugging n = blog log xc + 1 into Theorem 10.3.4 implies that the 

n-th prime is at most x. Thus there are at least n primes below x. For 

general education, you should know that this is by far not the best 

possible estimate. A celebrated achievement in number theory is the 

Prime Number Theorem due to Hadamard and de la Vall´ee Poussin, 

which states that x/ ln x (here we use the natural logarithm) is the ―right‖ 

bound, in the sense that 

 

 

 

Check Your Progress1 

1. What is Least common multiple? 
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2. Explain the concept of the infinity of primes 

 

 

 

10.5 SUMMARY 
 

Number theory has wide application in mathematics, computer science and 

almost every science related topics. 

10.6 KEYWORDS 
 

1. Divisor: a number by which another number is to be divided. 

2. Multiple: a number that may be divided by another a certain number of 

times without a remainder. 

3. Algorithm: a process or set of rules to be followed in calculations or 

other problem-solving operations 

4. Mathematical Induction is a mathematical technique which is used to 

prove a statement, a formula or a theorem is true for every natural 

number 

10.7 QUESTIONS FOR REVIEW 
 

1. Prove The n-th prime pn satisfies pn ≤      
for all n ≥ 1. 

2. Explain for two integers a and b that are not both 0, gcd(a, b) is a 

linear combination of a and b. 

3.State the properties of divisibility and prove them 

4. Explain the concept of remainder 
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10.9 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. In general, the ―well-ordering principle‖ states that any nonempty 

set of natural numbers must have a smallest element 

2. Explain the concept --10.2 

3. Provide the definition --  10.3 

4. Explain the Theorem with proof --- 10.4.3 
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UNIT 11: NUMBER THEORY – II 
 

STRUCTURE 

 

11.0 Objectives 

11.1 Introduction 

11.2 Congruence 

11.3 Modular Division 

      11.3.1 Theorem 

      11.3.2 Theorem  

11.4 Cryptography 

      11.4.1 Classical cryptography: 

      11.4.2 One-time pads 

      114.3 How to verify a password—without learning it? 

      11.4.4 How to find these primes? 

      11.4.5 Public key cryptography 

11.5 Summary 

11.6 Keywords 

11.7 Questions for review 

11.8 Suggested Readings 

11.9 Answer to check your progress 

11.0 OBJECTIVE 
 

Comprehend the concept of congruence, modular division. 

Understand the number theory in cryptography 

11.1 INTRODUCTION 
 

We usually associate arithmetic with the infinite set of integer numbers. 

However, modular arithmetic on finite sets is commonly used in our 

daily life. As an example, if it is now 1 am and we let 1000 hours pass, 

what time will it be? We can use the division algorithm to see that 1000 

= 41 × 24 + 16 and conclude that adding 1000 hours is like adding 16 

hours, since the clock returns to the same position every 24 hours. So 

after 1000 hours it will be 5 pm (17 hours after midnight). There are 

many examples in which it is natural and useful to limit our number 
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system to a finite range of integers, such as 0 through n−1, for some n. 

This number system is denoted by ℤn. Days of the week, hours of the 

day, minutes in an hour are all familiar examples of finite number 

systems, as are numbers in microprocessor registers, commonly limited 

to 32 binary digits. 

Modular arithmetic allows us to add, subtract, multiply, and sometimes 

divide numbers while staying within the finite set ℤn. The number n is 

called the modulus. A central notion in modular arithmetic is 

congruence. We say that two integers are congruent modulo n if they 

leave the same remainder when divided by n.  

 

11.2 CONGRUENCE 
 

Definition: Two integers a, b ∈ ℤ are said to be congruent modulo n, 

written as a ≡ n b or a ≡ b (mod n), if and only if they leave the same 

remainder when divided by n, that is, a rem n = b rem n. 

 

Lemma a ≡ n b if and only if n|(a − b). 

Proof:  If a ≡n b then a rem n = b rem n. Put r = a rem n = b rem n. Then 

there exist two integers q1 and q2, such that a = q1n + r and b = q2n + r. 

Subtracting the second equation from the first, we get a − b = (q1 − q2)n 

and n|(a − b). 

 

On the other hand, if n|(a−b) then there exists an integer d, such that a−b 

= nd. By the division algorithm, there exist integers q1, q2 ∈ Z, and 0 ≤ 

r1, r2 < n, such that a = q1n + r1 and b = q2n + r2. Thus (q1 − q2)n + (r1 − 

r2) = nd, and r1 − r2 = (q2 − q1 + d)n. Thus n|(r1 − r2). However, |r1 − r2| 

< n, so necessarily r1 − r2 = 0, which implies that a rem n = b rem n, and 

a ≡n b. 

You should use the definition to verify that for any a, b, c ∈ ℤ, 

• a ≡ n a. (Reflexivity.) 

• If a ≡ n b then b ≡n a. (Symmetry.) 

• If a ≡ n b and b ≡n c then a ≡n c. (Transitivity.) 

The operations of addition, subtraction, and multiplication on ℤn are 

defined by 
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first doing the corresponding operation in Z and then taking the 

remainder modulo 

n. That is, if we denote these respective operations by +n, −n, and ·n, 

then 

a +n b = (a + b) rem n 

a − n b = (a − b) rem n 

a · n b = (ab) rem n 

Exponentiation is defined through repeated multiplication. 

 

Lemma Properties of congruence: 

(a) (a rem n) rem n = a rem n 

(b) (a rem n) ≡n a 

(c) (ab) rem n = (a rem n)(b rem n) rem n 

(d) (a rem n)(b rem n) ≡n ab 

(e)  ∏ (        ) 
    i≡n ∏   

 
    

(f) If a1 ≡n a2 and b1 ≡n b2 then 

 

a1 + b1 ≡n a2 + b2 

a1 − b1 ≡n a2 − b2 

a1b1 ≡n a2b2 

 

Proof. (b) is just a restatement of (a). To prove these we need to show 

that n|(a −(a rem n)).  

Put r = a rem n. By the division algorithm, there exists q ∈ Z, such that a 

= qn + r. Thus a − r = qn, which implies that n|a − r and concludes the 

proof. 

(d) is a restatement of (c), and (e) can be proved from (d) by induction. 

To prove (c) we need to show that n|(ab − (a rem n)(b rem n)).  

Use the division algorithm to represent a = q1n + r1 and b = q2n + r2.  

Then 

ab − (a rem n)(b rem n) = (q1n + r1)(q2n + r2) − r1r2 = (q1q2n + r1q2 + 

q1r2)n, 

which implies the claim. 

We now prove (f). We know that n|(a1 − a2) and n|(b1 − b2). That is, 

there exist integers q and s, such that a1−a2 = qn and b1−b2 = sn.  
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Adding these equations gives (a1 + b1) − (a2 + b2) = (q + s)n, which 

yields the first part of the claim.  

Subtracting similarly gives the second part.  

Writing a1 = a2+qn and b1 = b2+sn and multiplying the equations gives 

 

a1b1 = a2b2 + b2qn + a2sn + qsn
2
 

a1b1 − a2b2 = (b2q + a2s + qsn)n, 

 

Which  yields the third part. 

 

11.3 MODULAR DIVISION 
 

The division operation is not defined for the integers in general: There is 

no integer that corresponds to 5 divided by 4, for instance. (In other 

words, there is no x ∈ ℤ, such that 4x = 5.) This distinguishes ℤ from sets 

like ℚ or ℝ that are closed under division. 

Division in ℤn appears even more unruly. For example, in ℤ6, the 

equation 2x = 4 is satisfied by both x = 2 and x = 5, while the equation 2x 

= 3 has no solutions. So the notion of ―b divided by a‖ can be undefined 

or even ambiguous in ℤn. In particular, we cannot generally cancel a 

multiplier from both sides of a congruence, that is, if ab ≡n ac we cannot 

reason that b ≡
n 
c. To take the above illustration, 

 

2 · 2 ≡ 6 2 · 5, but 2 ≢ 6 5. 

 

Quite remarkably, however, the division operation is well-defined when 

n is a prime p. Thus Zp is in a sense as well-behaved as the real numbers, 

despite being a finite set! After a small digression that explores what 

―well-behaved‖ actually means here, we will state an even more general 

result on modular division. 

 

Digression (notions from abstract algebra): There is a way to precisely 

state what we mean by ―well-behaved‖ above. Jumping the gun, I‘ll say 

that ℤp is a field, not just a ring. Now let me tell you what this means. 

The notion of a ring in algebra is meant to abstract our intuition 
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concerning the essential properties of the integers. 

Given a set S equipped with two operations, + (addition) and · 

(multiplication), we say that S is a ring if the following all hold for any a, 

b, c ∈ S: 

• a + b ∈ S and a · b ∈ S. 

• a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c. 

• a + b = b + a and a · b = b · a. 

• a · (b + c) = a · b + a · c. 

• There exists an additive identity element 0 ∈ S that satisfies a + 0 = a 

and a multiplicative identity element 1 ∈ S that satisfies a · 1 = a for all a 

∈ S. For every a ∈ S there exists an additive inverse −a ∈ S for which a+ 

(−a) = 0.  

 

All the number systems we have encountered so far are rings, including 

Z, Q, R, and Zn. However, some of them possess additional structure that 

allows the division operation. Namely, a ring is said to be a field if, in 

addition to the above, the following  holds 

 

• For every a ∈ S, such that a 6= 0, there exists a multiplicative inverse 

a−1 ∈ S for which a · a−1 = 1. 

 

The number systems R and Q, as well as Zp when p is prime, are fields. 

In fields the division operation is well-defined, and b/a = b·a−1, as can 

be verified by plugging x = b · a−1 into the equation ax = b. A field with 

a finite number of elements is called a Galois field, after the French 

mathematician Everest Galois. (A feisty young man who died in a duel at 

the age of 20, after making significant enough contributions to 

mathematics to have a whole field (sic) named in his honor!) Anyway, 

now that we know what fields are, let‘s see why ℤp is one. In fact, we 

prove something more general: 

11.3.1 Theorem 

If a and n are coprime then there exists exactly one x ∈ ℤn for which ax ≡ 

n b, for any b ∈ Z. 
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Proof. We need to prove existence and uniqueness of x as described in 

the theorem. ax ≡n b if and only if there exists q ∈ Z, such that ax − b = 

nq, or ax − nq = b. Now, since gcd(a, n) = 1, any integer, including b, is 

a linear combination of a and n. This proves existence. 

 

To prove uniqueness, assume that for x, y ∈ ℤn it holds that ax ≡n b and 

ay ≡n b. Thus ax−ay ≡n 0, or n|a(x−y). As you proved in one of the 

homework assignments, since n and a are coprime, this implies that n|(x 

− y), and therefore that x − y ≡n 0. 

 

Thus x ≡n y, which proves uniqueness. 

 

Corollary  For a prime p and any a, b ∈ Z, such that a ≢ p 0, there exists 

exactly one x∈ ℤp  for which ax ≡p b. The fact that division is well-

defined in ℤp when p is prime also means that cancelations become valid. 

Thus if a ≢p 0 and ab ≡p ac we can safely conclude that b ≡p c. 

We now know that b/a is well-defined in ℤp, but how do we find it? That 

is, how do we find x ∈ ℤp, for which ax ≡p b. This question is particularly 

important when p is large and it takes too long to simply enumerate all 

the elements of ℤp, Fortunately, the following result, known as Fermat’s 

Little Theorem, can help us: 

11.3.3 Theorem  

For a prime p and any a ≢ p 0, a 
p−1

 ≡ p 1. 

Proof. Consider the set S, defined as 1 · a, 2 · a, . . . , (p − 1) · a. None of 

these p – 1 integers are congruent modulo p, since we have seen that if ia 

≡p ja then i ≡p j. However, each element of S is congruent to some 

element of c. Since there are p – 1 elements in S and p− 1 nonzero 

elements in ℤp the elements of S must be congruent to each of 1, 2, . . . , 

(p − 1) in some order. Therefore,  

1 · 2 · · · · · (p − 1) ≡p 1a · 2a · · · · · (p − 1)a, 

or 1 · 2 · · · · · (p − 1) ≡p 1 · 2 · · · · · (p − 1) · a
p−1

. 

We can cancel each of 1, 2, . . . , (p − 1) from both sides of the 

congruence, obtaining 
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a
p−1 

≡p 1. 

Fermat‘s Little Theorem allows us to quickly perform division in Zp. 

The element 

x ∈ ℤp  for which ax ≡p b is simply (a 
p−2

 b rem p). 

 

Example: Solve for x : 5x ≡ 1 mod 12.  

Solution:  One method is as follows. We know that gcd(5, 12) = 1, so 

some linear combination of 5 and 12 is equal to 1. In Section 1 we had a 

general method for doing this, and we also had a spreadsheet approach. 

However, we can simply note by observation that  

1=5 · 5+(−2) · 12  

So both sides of this equality are congruent to each other mod 12.  

Hence 

 1 ≡ 5 · 5+(−2) · 12 ≡ 5 · 5 mod 12. 

 

So one solution is x = 5. More generally, if 

 

 x ≡ 5 mod 12 then 5x ≡ 25 ≡ 1 mod 12  

 

Here is another approach: Start with the equation 5x ≡ 1 mod 12. If this 

were an equality, we would simply divide by 5 to get x = 1/5. But we are 

in the realm of integers so this won‘t work. Instead we multiply by 5 to 

get  

25x ≡ 5 mod 12 or x ≡ 5 mod 12. 

 Note that we multiplied by 5 to get a coefficient of 1: 5 · 5 ≡ 1 mod 12. 

 

Example: Imagine you are a mouse and that each day you travel clockwise 

around a clock, passing through 25 minutes on the clock. You start at 12 

o‘clock. Here is what you journey will look like: 
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Note that the transition from 10 o‘clock was not to 15 o‘clock, but (working 

mod 12) to 15 mod 12 or 3 o‘clock. In terms of clocks, we asked when the 

mouse would land at the 1 o‘clock spot on the clock. We can quickly find when 

the mouse will land at 4 o‗clock. The equation is 5x ≡ 4 mod 12 Multiply by 5 

to get 25x ≡ 20 mod 12 or simply x ≡ 8 mod 12. It take 8 days. 

Example: Find 7
222 

mod 11.  

Solution: By Fermat‘s little theorem, we know that  

7
10

 ≡ 1 mod 11, and so (7
10

) 
k
 ≡ 1( mod 11) for every positive integer k.  

Therefore, 7
222

 = 7 
22·10+2

 = (7 
10

) 
22

7
 2
 ≡ 1

 22
 · 49 ≡ 5( mod 11).  

Hence, 7
222

 mod 11 = 5. 

Check Your Progress 1 

1.  Define Congruence and state its properties 

 

 

2. What do you understand by Digression? 

 

 

 

11.4 CRYPTOGRAPHY 
 

11.4.1 Classical Cryptography: 

Ever since writing was invented, people have been interested not only in 

using it to communicate with their partners, but also in trying to conceal 

the content of their messagefrom their adversaries. This leads to 

cryptography (or cryptology), the science of secret communication. 

 The basic situation is that one party, say King Arthur, wants to send a 

message to King Bela. There is, however, a danger that the evil Caesar 
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Caligula intercepts the message and learns things that he is not supposed 

to know about. The message, understandable even for Caligula, is called 

the plain text. To protect its content, King Arthur encrypts his message. 

When King Bela receives it, he must decrypt it in order to be able to read 

it. For the Kings to be able to encrypt and decrypt the message, they must 

know something that that the Caesar does not know: this information is 

the key. 

 Many cryptosystems have been used in history; most of them, in fact, 

turn out to be insecure, especially if the adversary can use powerful 

computing tools to break it. Perhaps the simplest method is substitution 

code: we replace each letter of the alphabet by another letter. The key is 

the table that contains for each letter the letter to be substituted for it. 

While a message encrypted this way looks totally scrambled, substitution 

codes are in fact easy to break. Solving exercise 16.3 will make it clear 

how the length and positions of the words can be used to figure out the 

original meaning of letters, if the breaking into words is preserved (i.e., 

‖Space‖ is not replaced by another character). But even if the splitting 

into words is hidden, an analysis of the frequency of various letter gives 

enough information to break the substitution code. 

11.4.2 One-Time Pads 

 There is another simple, frequently used method, which is much more 

secure: the use of ―one-time pads‖. This method is very safe; it was used 

e.g. during World War II for communication between the American 

President and the British Prime Minister. Its disadvantage is that it 

requires a very long key, which can only be used once. A one-time pad is 

a randomly generated string of 0‘s and 1‘s. Say, here is one: 

1100011100001000011001010010010010110011001010110000111011

0000010 

 

Both Kings Arthur and Bela has this sequence (it was sent well in 

advance by a messenger). 

Now King Arthur wants to send the following message to King Bela: 

     ATTACK MONDAY 
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First, he has to convert it to 0‘s and 1‘s. It is not clear that medieval kings 

had the 

knowledge to do so, but the reader should be able to think of various 

ways: using ASCII codes, or Unicodes of the letters, for example. But we 

want to keep things simple, so we just number the letters from 1 to 26, 

and then write down the binary representation of the numbers, putting 0‘s 

in front so that we get a string of length 5 for each letter. Thus we have 

―00001‖ for A, ―00010‖ for B, etc. We use ―00000‖ for ―Space‖. The 

above message 

becomes: 

 

0000110010100100000100011010110000001101011110111000100000

0111001 

 

This might look cryptic enough, but Caligula (or rather one the excellent 

Greek scientist he keeps in his court) could easily figure out what it 

stands for. To encode it, Arthur adds the one-time pad to the message bit-

by-bit. To the first bit of the message (which is 0) he adds the first bit of 

the pad (1) and writes down the first bit of the encoded message: 0+1 = 

1. He computes the second, third, etc. bits similarly: 0+1 = 1, 0+0 = 0, 

0+0 = 0, 1 + 0 = 1, 1 + 1 = 0,... (What is this 1 + 1 = 0? Isn‘t 1 + 1 = 2? 

Or, if we want to use the binary number system, 1 + 1 = 10? Well, all 

that happens is that we ignore the ―carry‖, and just write down the last 

bit. We could also say that the computation is done modulo 

2). Another way of saying what King Arthur does is the following: if the 

k-th bit of the pad is 1, he flips the k-th bit of the text; else, he leaves it as 

it was. 

So Arthur computes the encoded message: 

 

1100101110101100011101001000100010111110010100001000011011

0111011 

 

He sends this to King Bela, who looking at the one-time pad, can easily 

flip back the appropriate bits, and recover the original message. But 
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Caligula (and even his excellent scientists) does not know the one-time 

pad, so he does not know which bits were flipped, and so he is helpless. 

The message is safe. It can be expensive to make sure that Sender and 

Receiver both have such a common key; but note that the key can be sent 

at a safer time and by a completely different method than the message; 

moreover, it may be possible to agree on a key even without actually 

passing it. 

11.4.3 How To Save The Last Move In Chess? 

Modern cryptography started in the late 1970‘s with the idea that it is not 

only lack of information that can protect our message against an 

unauthorized eavesdropper, but also the computational complexity of 

processing it. The idea can is illustrated by the following simple 

example. 

Alice and Bob are playing chess over the phone. They want to interrupt 

the game for the night; how can they do it so that the person to move 

should not get the improper advantage of being able to think about his 

move whole night? At a tournament, the last move is not made on the 

board, only written down, put in an envelope, and deposited with the 

referee. But now the two players have no referee, no envelope, no 

contact other than the telephone line. The player making the last move 

(say, Alice) has to send Bob some message. The next morning (or 

whenever they continue the game) she has to give some additional 

information, some ―key‖, which allows Bob to reconstruct the move. 

Bob should not be able to reconstruct Alice‘s move without the key; 

Alice should not be able to change her mind overnight and modify her 

move. 

 Surely this seems to be impossible! If she gives enough information the 

first time to uniquely determine her move, Bob will know the move too 

soon; if the information given the first time allows several moves, then 

she can think about it overnight, figure out the best among these, and 

give the remaining information, the ―key‖ accordingly. 

 If we measure information in the sense of classical information theory, 

then there is no way out of this dilemma. But complexity comes to our 

help: it is not enough to communicate information, it must also be 
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processed. 

 So here is a solution to the problem, using elementary number theory! 

(Many other schemes can be designed.) Alice and Bob agree to encode 

every move as a 4-digit number (say, ‗11‘ means ‗K‘, ‗6‘ means ‗f‘, and 

‗3‘ means itself, so ‗1163‘ means ‗Kf3‘). So far, this is just notation. 

 Next, Alice extends the four digits describing her move to a prime 

number p = 1163... with 200 digits. She also generates another prime q 

with 201 digits and computes the product N = pq (this would take rather 

long on paper, but is trivial using a personal computer). The result is a 

number with 400 or 401 digits; she sends this number to Bob. Next 

morning, she sends both prime factors p and q to Bob. He reconstructs 

Alice‘s move from the first four digits of the smaller prime. To make 

sure that Alice was not cheating, he should check that p and q are primes 

and that their product is N. Let us argue that this protocol does the job. 

 First, Alice cannot change her mind overnight. This is because the 

number N contains all the information about her move: this is encoded as 

the first four digits of the smaller prime factor of N. So Alice commits 

herself to the move when sending N. But exactly because the number N 

contains all the information about Alice‘s move,Bob seems to have the 

advantage, and he indeed would have if he had unlimited time or 

unbelievably powerful computers. What he has to do is to find the prime 

factors of the number N. But since N has 400 digits (or more), this is a 

hopelessly difficult task with current technology. 

 Can Alice cheat by sending a different pair (p′, q′) of primes the next 

morning? No, because Bob can easily compute the product p′q′, and 

check that this is indeed the number N that was sent the previous night.  

 All the information about Alice‘s move is encoded in the first 4 digits of 

the smaller prime factor p. We could say that the rest of p and the other 

prime factor q serve as a ―deposit box‖: they hide this information from 

Bob, and can be opened only if the appropriate key (the factorization of 

N) is available. The crucial ingredient of this scheme is complexity: the 

computational difficulty to find the factorization of an integer. With the 

spread of electronic communication in business, many solutions of 

traditional correspondence and trade must be replaced by electronic 

versions. We have seen an electronic ―deposit box‖ above. Other 
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schemes (similar or more involved) can be found for electronic 

passwords, authorization, authentication, signatures, watermarking, etc. 

These schemes are extremely important in computer security, 

cryptography, automatic teller machines, and many other fields. The 

protocols are often based on simple number theory; in the next section 

we discuss (a very simplified version of) one of them. 

 

114.4 How To Verify A Password—Without 

Learning It? 

 In a bank, a cash machine works by name and password. This system is 

safe as long as the password is kept in secret. But there is one week point 

in security: the computer of the bank must store the password, and the 

administrator of this computer may learn it and later misuse it. 

 Complexity theory provides a scheme where the bank can verify that the 

customer does indeed know the password—without storing the password 

itself! At the first glance this looks impossible—just as the problem with 

filing the last chess move was. And the solution (at least the one we 

discuss here) uses the same kind of construction as our telephone chess 

example. 

 Suppose that the password is a 100-digit prime number p (this is, of 

course, too long for everyday use, but it illustrates the idea best). When 

the customer chooses the password, he chooses another prime q with 101 

digits, forms the product N = pq of the two primes, and tells the bank the 

number N. When the teller is used, the customer tells his name and the 

password p. The computer of the bank checks whether or not p is a 

divisor of N; if so, it accepts p as a proper password. The division of a 

200 digit number by a 100 digit number is a trivial task for a computer. 

  Let us assume that the system administrator learns the number N 

stored along with the files of our customer. To use this in order to 

impersonate the customer, he has to find a 100-digit number that is a 

divisor of N; but this is essentially the same problem as finding the prime 

factorization of N, and this is hopelessly difficult. So—even though all 

the necessary information is contained in the number N—the 

computational complexity of the factoring problem protects the password 

of the customer! 
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11.4.5 How To Find These Primes? 

In our two simple examples of ―modern cryptography‖, as well as in 

almost all the others, one needs large prime numbers. We know that there 

are arbitrarily large primes , but are there any with 200 digits, starting 

with 1163 (or any other 4 given digits)? Maple found (in a few seconds 

on a laptop!) the smallest such prime number: 

 

1163000000000000000000000000000000000000000000000000000000

000000000 

0000000000000000000000000000000000000000000000000000000000

000000000 



00000371 

 

The smallest 200 digit integer starting with 1163 is 1163 · 10196. This is 

of course not a prime, but above we found a prime very close by. There 

must be zillions of such primes! In fact, a computation very similar to 

what we did in section 8.4 shows that the number of primes Alice can 

choose from is about 1.95 ·10193. 

This is a lot of possibilities, but how to find one? It would not be good to 

use the prime above (the smallest eligible): Bob could guess this and 

thereby find out Alice‘s move. What Alice can do is to fill in the missing 

196 digits randomly, and then test whether the number she obtains is a 

prime. If not, she can throw it away and try again. As we computed in 

section 8.4, one in every 460 200-digit numbers is a prime, so on the 

average in about 460 trials she gets a prime. This looks like a lot of trials, 

but of course she uses a computer; here is one we computed for you with 

this method (in a few seconds again): 

 

1163146712876555763279909704559660690828365476006668873814

489354662 

4743604198911046804111038868958805745715572480009569639174

033385458 

4185935354886223237823175775598647396527011271770972783894

65414589 
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So we see that in the ―envelope‖ scheme above, both computational facts 

mentioned in section 8.7 play a crucial role: it is easy to test whether a 

number is a prime (and thereby it is easy to compute the encryption), but 

it is difficult to find the prime factors of a composite number (and so it is 

difficult to break the cryptosystem). 

1 For the following message, the Kings used substitution code. Caligula 

intercepted the message and quite easily broke it. Can you do it too? 

 

U GXUAY LS ZXMEKW AMG TGGTIY HMD TAMGXSD LSSY, 

FEG 

GXSA LUGX HEKK HMDIS. FSKT. 

 

2 At one time, Arthur made the mistake of using the one-time pad 

shifted: the first 

bit of the plain text he encoded using the second bit of the pad, the 

second bit of the plain text he encoded using the third bit of the pad etc. 

He noticed his error after he sent the message off. Being afraid that Bela 

will not understand his message, he encoded it again (now correctly) 

using the same one-time pad, and sent it to Bela by another courier, 

explaining what happened. 

Caligula intercepted both messages, and was able to recover the plain 

text. How? 

 

3 The Kings were running low on one-time pads, and so Bela had to use 

the same 

pad to encode his reply as they used for Arthur‘s message. Caligula 

intercepted both messages, and was able to reconstruct the plain texts. 

Can you explain how? 

 

4 Motivated by the one-time pad method, Alice suggests the following 

protocol 

for saving the last move in their chess game: in the evening, she encrypts 

her move 

(perhaps with other text added, to make it reasonably long) using a 
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randomly generated 0-1 sequence as the key (just like in the one-time 

pad method). The next morning she sends the key to Bob, so that he can 

decrypt the message. Should Bob accept this suggestion? 

 

5 Alice modifies her suggestion as follows: instead of the random 0-1 

sequence, 

she offers to use a random, but meaningful text as the key. For whom 

would this be advantageous? 

11.4.6 Public Key Cryptography 

 Cryptographic systems used in real life are more complex than those 

described in the previous section—but they are based on similar 

principles. In this section we sketch the 

math behind the most commonly used system, the RSA code (named 

after its inventors, 

Rivest, Shamir and Adleman). the protocol. Let Alice generate two 100-

digit prime numbers, p and q and computes their product m = pq. Then 

she generates two 200-digit numbers d and e such that (p−1)(q−1) is a 

divisor ed –  

1. The numbers m and e she publishes on her web site, or in the phone 

book, but the prime factors p and q and the number d remain her closely 

guarded secrets. The number d is called her private key, and the number 

e, her public key (the number p and q she may even forget—they will not 

be needed to operate the system, just to set it up.Suppose first that Bob 

wants to send a message to Alice. He writes the message as a number x 

(we have seen before how to do so). This number x must be a non-

negative integer less than m (if the message is longer, he can just break it 

up into smaller chunks). 

The next step is the trickiest: Bob computes the remainder of xe modulo 

m. Since both x and e are huge integers (200 digits), the number xd has 

more that 10200 digits – we could not even write it down, let alone 

compute it! Luckily, we don‘t have to compute this number, only its 

remainder when dividing with m. This is still a large number - but at 

least it can be written down in 2-3 lines. We‘ll return to computing it in 

the exercises. 
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 So let r be this remainder; this is sent to Alice. When she receives it, she 

can decrypt it using her private key d by doing essentially the same 

procedure as Bob did: she computes the remainder of rd modulo m. 

And—a black magic of number theory, until you see the explanations—

this remainder is just the plain text x. 

 

What if Alice wants to send a message to Bob? He also needs to go 

through the trouble of generating his private and public keys. He has to 

pick two primes p′ and q′, compute their product m′, select two positive 

integers d′ and e′ so that (p′ − 1)(q′ − 1) s a divisor or e′d′ − 1, and finally 

publish m′ and e′. Then Alice can send him a secure message. 

The black math magic behind the protocol. The key fact from 

mathematics we use 

is Fermat‘s Theorem 8.6. Recall that x is the plain text (written as an 

integer) and the encrypted message r is the remainder of xe modulo m. 

So we can write 

      r = xe − km 

with an appropriate integer k (the value of k is irrelevant for us). To 

decrypt, Alice raises this to the d-th power, to get  

     rd = (xe − km)d = xed + k′m, 

where k′ is again some integer. To be more precise, she computes the 

remainder of this modulo m, which is the same as the remainder of xed 

modulo m. We want to show that this is just x. Since 0 ≤ x < m, it 

suffices to argue that x
ed 

− x is divisible by m. Since m = pq is the 

product of two distinct primes, it suffices to prove that x
ed

 − x is divisible 

by each of p and q. 

 

Let us consider divisibility by p, for example. The main property of e and 

d is that 

ed − 1 is divisible by (p − 1)(q − 1), and hence also by p. This means that 

we can write ed = (p − 1) l + 1, where l is a positive integer. we have  

 

    x
ed

 − x = x(x
(p−1)l

 − 1bigr). 

 

Here x
(p−1) l

 − 1 is divisible by x
p−1 

− 1 and so x(x
(p−1) l

 – 1 bigr) is 
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divisible by x
p
 − x, which in turn is divisible by p by Fermat‘s ―Little‖ 

Theorem. 

How to do all this computation? We already discussed how to find 

primes, and Alice can follow the the method described in section 8.7. 

The next issue is the computation of the two keys e and d. One of them, 

say e, Alice can choose at random, from the range 1..(p−1)(q −1)−1. She 

has to check that it is relatively prime to (p−1)(q−1); this can be done 

efficiently with the help of the Euclidean Algorithm discussed in section 

8.6. If the number she chose is not relatively prime to (p − 1)(q − 1), 

she just throws it out, and tries another one. This is similar to the method 

we used for finding a prime, and it is not hard to see that she‘ll find a 

good number on more trials than she can find a prime. 

But if the euclidean algorithm finally succeeds, it also gives two integers 

m and n so that 

     em + (p − 1)(q − 1)n = 1. 

 

 So em−1 is divisible by (p−1)(q−1). Let d denote the remainder of m 

modulo (p−1)(q−1), 

then ed − 1 is also divisible by (p − 1)(q − 1), and so we have found a 

suitable key d. 

Finally, we have to address the question: how to compute the remainder 

of x
e
 modulo m, when just to write down x

e
 would fill the universe? The 

answer is easy: after each operation, we can replace the number we get 

by its remainder modulo m. This way we never get numbers with more 

than 400 digits, which is manageable. 

But there is another problem: x
e
 denotes x multiplied by itself e ≈ 10200 

times; even if we carry out 1 billion multiplications every second, we 

will not finish before the end of the universe! The first hint that 

something can be done comes if we think of the special case when e = 2
k
 

is a power of 2. In this case, we don‘t have to multiply with x 2
k 
−1 

times; instead, we can repeatedly square x just k times: we get x
2
, (x

2
)
2
 = 

x
4
, (x

4
)
2
 = x

8
 etc. 

If e is not a power of 2, but say the sum of two powers of 2: e = 2
k
 + 2

l
, 

then we can separately  



Notes 

80 

 

 

 

compute    
 and    

by this repeated squaring, and then multiply these 2 

numbers (not forgetting that after each squaring and multiplication, we 

replace the number by its remainder modulo m). This works similarly if 

m is the sum of a small number of powers of 2. 

But every number is the sum of a small number of powers of 2: just think 

of its 

representation in binary. The binary representation 1011001012 actually 

means that the 

number is 2
8
 + 2

6 
+ 2

5
 + 2

2 
+ 2

0
. A 200 digit number is the sum of at most 

665 powers of 

2. We can easily compute (with a computer, of course)    
 for every k ≤ 

664 by repeated 

squaring, and then the product of these numbers. 

6 Let e = e0e1 ...ek be the expression of e in binary (ei = 0 or 1, e0 is 

always 1). 

 

Signatures, etc. There are many other nice things this system can do. For 

example, suppose that Alice gets a message from Bob as described 

above. How can she know that it indeed came from Bob? Just because it 

is signed ―Bob‖, it could have come from anybody. But Bob can do the 

following. First, he encrypts the message with his private key, then adds 

―Bob‖, and encrypts it again with Alice‘s public key. When Alice 

receives it, she can decrypt it with her private key. She‘ll see a still 

encrypted message, signed ―Bob‖. She can cut away the signature, look 

up Bob‘s public key in the phonebook, and use it to decrypt the message. 

 

 One can use similar tricks to implement many other electronic gadgets, 

using RSA. 

 

Security. The security of the RSA protocol is a difficult issue, and since 

its inception in 1977, thousands of researchers have investigated it. The 

fact that no attack has been generally successful is a good sign; but 
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unfortunately no exact proof of it security has been found (and it appears 

that current mathematics lacks the tools to provide such a proof in the 

foreseeable future. 

 We can give, however, at least some arguments that support its security. 

Suppose that you intercept the message of Bob, and want to decipher it. 

You know the remainder r (this is the intercepted message). You also 

know Alice‘s public key e, and the number m. One could think of two 

lines of attack: either you can figure out her private key d and then 

decrypt the message just as she does, or you could somehow more 

directly find the integer x, knowing the remainder of xe modulo m. 

 Unfortunately there is no theorem stating that either of this is impossible 

in less than astronomical time. But one can justify the security of the 

system with the following fact: if one can break the RSA system, then 

one can use the same algorithm to find the prime factors of m (see 

exercise ??). Since the factorization problem has been studied by so 

many and no efficient method has been found, this makes the security of 

RSA quite probable. 

7 Suppose that Bob develops an algorithm that can break RSA in the 

first, more 

direct way described above: knowing Alice‘s public key m and e, he can 

find her private key d. 

(a) Show that he can use this to find the number (p − 1)(q − 1); 

(b) from this, he can find the prime factorization m = pq. 

 

The real word. How practical could such a complicated system be? It 

seems that only a few mathematicians could ever use it. But in fact you 

have probably used it yourself hundreds of times! RSA is used in SSL 

(Secure Socket Layer), which in turn is used in https (secure http). Any 

time you visit a ―secure site‖ of the internet, your computer generates a 

public and private key for you, and uses them to make sure that your 

credit card number and other personal data remain secret. It does not 

have to involve you in this at all—all you notice is that the connection is 

a bit slower. 

 In practice, the two 100 digit primes are not considered sufficiently 

secure. Commercial applications use more than twice this length, 
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military applications, more than 4 times. While the hairy computations of 

raising the plain text x to an exponent which itself has hundreds of digits 

are surprisingly efficient, it would still be too slow to encrypt and 

decrypt each message this way. A way out is to send, as a first message, 

the key to a simpler system (think of a one-time pad, although one uses a 

more efficient system in practice, like DES, the Digital Encryption 

Standard). This key is then used for a few minutes to encode the 

messages going back and force, then thrown away. The idea is that in a 

short session, the number of encoded messages is not enough for an 

eavesdropper to break the system 

Check Your Progress 2 

1. What is Public cryptography? 

 

 

2. Explain Security key. 

 

 

 

11.5 SUMMARY 
 

Number theory has a great application in daily life as well as in modern 

algebra. It has got wide application in different academic fields and 

practical application. Cryptography is used widely for transmitting 

information in digital format over internet or 4G. 

11.6 KEYWORDS 
 

1. Key - In cryptography, a key is a piece of information (a parameter) 

that determines the functional output of a cryptographic algorithm. 
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2. Ring - A ring is a set R equipped with two binary operations + and · 

satisfying the following three sets of axioms, called the ring axioms 

3. Linear Combination. A sum of the elements from some set with 

constant coefficients placed in front of each 

4. Congruent:  identical in form; coinciding exactly when superimposed 

11.7 QUESTIONS FOR REVIEW 
 

1. What is the value of 5
−1

 mod 7? 

2. Solve the congruence 8x ≡ 13 mod 29. 

3. If a ≡ b mod 2 show that both a and b are both odd, or they are both 

even. 

4. Explain in detail the concept of cryptography with example. 
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11.9 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. State the concept – 11.2 & state the properties 11.2.1 

2. Explain the concept –11.3.1 

3. Explain the concept --  11.4.6 

4. Explain the security key concept from --- 11.4.6 
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UNIT 12: GROUP AND CODING 

THEORY 
 

STRUCTURE 

 

12.0 Objectives 

12.1 Binary Operations 

            12.1.1 Types of Binary Operations 

12.2 Semi Group 

12.3 Identity Element 

12.4 Group 

12.5 Sub-Semi group 

12.6 Product & Quotient 

            12.6.1 Groups 

                     12.6.1.1 Cayley diagrams of direct products: 

                     12.6.1.2 Quotients 

            12.6.2 Semi groups 

                      12.6.1 Product  

                      12.6.2.2 Quotient  

12.7 Homomorphism, Isomorphism And Auto orphism 

12.8 Coding Of Binary Information And Error Detection 

12.9 Decoding And Error Correction  

12.10 Summary 

12.11 Keywords 

12.12 Questions for review 

12.13 Suggested Readings 

12.14 Answer to check your progress 

 

12.0 OBJECTIVES 
 

To understand the concepts of :  Group, semi group, products & 

quotients of semi groups.  Hornomorphism, Isornorphism& auto orphism 

of semi groups & Groups. To know about group code. To know about 

parity check matrix and decode words using maximum likelihood 

technique. 
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12.1 BINARY OPERATION 
 

A binary operation on a set A is an everywhere defined function f : A   

A A.  Generally operation is defined by  If  is binary operation on A 

then a * b ∊ A∀ a,b ∊ A. 

Properties of binary operation : - Let  be a binary operation on a set 

A, 

Then  satisfies the following properties for any a, b and c in A 

1. a  a * a     Identity property 

2. a * b = b* a   Commutative property 

3. a* (b*c)=  (a * b)* c Associative property 

12.1.1 Types of Binary Operations 

Commutative 

A binary operation * on a set A is commutative if a * b = b * a, for all (a, b) 

∈ A (non-empty set). Let addition be the operating binary operation for a = 

8 and b = 9, a + b = 17 = b + a. 

Associative 

The associative property of binary operations hold if, for a non-empty set 

A, we can write (a * b) *c = a*(b * c). Suppose N be the set of natural 

numbers and multiplication be the binary operation. Let a = 4, b = 5 c = 6. 

We can write (a × b) × c = 120 = a × (b × c). 

Distributive 

Let * and o be two binary operations defined on a non-empty set A. The 

binary operations are distributive if a*(b o c) = (a * b) o (a * c) or (b o c)*a 

= (b * a) o (c * a). Consider * to be multiplication and o be subtraction. 

And a = 2, b = 5, c = 4. Then, a*(b o c) = a × (b − c) = 2 × (5 − 4) = 2. And 

(a * b) o (a * c) =  (a × b) − (a × c) = (2 × 5) − (2 × 4) = 10 − 6 = 2. 

Identity 

If A be the non-empty set and * be the binary operation on A. An element e 

is the identity element of a ∈ A, if a * e = a = e * a. If the binary operation 

is addition(+), e = 0 and for * is multiplication(×), e = 1. 

Inverse 
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If a binary operation * on a set A which satisfies a * b = b * a = e, for all a, 

b ∈ A. a
-1

 is invertible if for a * b = b * a= e, a
-1

 = b. 1 is invertible when * 

is multiplication. 

Example: Show that division is not a binary operation in N nor subtraction 

in N. 

Solution: Let a, b ∈ N 

Case 1: Binary operation * = division(÷) 

–: N × N→N given by (a, b) → (a/b) ∉ N (as 5/3 ∉ N) 

Case 2: Binary operation * = Subtraction(−) 

–: N × N→N given by (a, b)→ a − b ∉ N (as 3 − 2 = 1 ∈ N but 2−3 = −1 

∉ N). 

Example: Show that  defined as x y  x  is a binary operation on the 

set of positive integers. Show that  is not commutative but is 

associative. 

 

Solution : Consider two positive integers x and y. By definition x y  x 

is a binary operation which is a positive integer. Hence    is a binary 

operation. 

For commutativity : x  y  x and y  x  x. Hence x  y  y  x in general 

  is not commutative. 

But x  (y  z)   x  y   x  and( x  y)  z  x   z   x. Hence 

x  (y  z)  ( x  y)     

   is associative 

 

12.2 SEMI GROUP  
 

A non-empty set S together with a binary operation  is called as a semi 

group if – 

i) binary operation  is closed 

ii) binary operation  is associative 

we denote the semi group by (S, ) 
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Commutative Semigroup :- A semi group (S, ) is said to be 

commutative if  is commutative i.e. a* b =b* a  ∀a ∊ S  

Examples : 1) (z, +) is a commutative semi group  

2) The set P(S), where S is a set, together with operation of union is a 

commutative semi group. 

3) (Z, –) is not a semi group.  The operation subtraction is not associative 

12.3 IDENTITY ELEMENT 
 

An element e of a semigroup (S, ) is called an identity element if e * a 

=  a *e aa      ∀a ∊ S  

Monoid:  A non-empty set M together with a binary operation *defined 

on it, is called as a monoid if – 

i) binary operation  is closed 

ii) binary operation  is associative and 

iii) (M, ) has an identity. 

i.e. A monoid is a semi group that has an identity 

Check Your Progress 1 

1.What is Binary operations? 

 

 

2. Define Semi group & identity element. 

 

 

12. 4 GROUP 
 

A a non-empty set G together with a binary operation  defined on it is 

called a group if 
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(i) binary operation  is close, 

(ii) binary operation  is associative, 

(iii) (G, ) has an identity, 

(iv) every element in G has inverse in G, 

We denote the group by (G, ) 

Commutative (Abelian Group : A group (G, ) is said to be 

commutative if  is commutative. i.e. a * b = b * a ∀ a,  b ∊ G 

Cyclic Group : If every element of a group can be expressed as some 

powers of an element of the group, then that group is called as cyclic 

group. The element is called as generator of the group. If G is a group 

and a is its generator then we write G = <a>. For example consider G = 

{1, -1, i, -I }. G is a group under the binary operation of multiplication. 

Note that G= <i>. Because  a = {i,i2, i3, i4}={i, -1, -i, 1}. 

12.5 SUB-SEMI GROUP : 
 

Let (S, ) be a semi group and let T be a subset of S. If T is closed under 

operation , then (T, ) is called a subsemigroup of (S, ). 

Submonoid : Let (S, ) be a monoid with identity e, and let T be a 

nonempty subset of S. If T is closed under the operation   T, then 

(T,and e ) is called a submonoid of (S, ). 

 

Subgroup : Let (G, ) be a group. A subset H of G is called as subgroup 

of G if (H, ) itself is a group. 

Necessary and Sufficient Condition for subgroup : Let (G; ) be a 

group. A subset H of G is a subgroup of G if and only if a * b
1

 ∊ H  1 

  a b∊ H 

12.6 PRODUCTS AND QUOTIENTS  

12.6.1 GROUPS 

Definition: The direct product of groups A and B consists of the set A × 

B, and the group operation is done component-wise: if (a, b), (c, d) ∈ A × 

B, then 
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   (a, b) ∗ (c, d) = (ac, bd). 

 A and B are the factors of the direct product. 

 

  The direct product of two groups joins them so they act 

independently of each other 

 

12.6.1.1 Cayley Diagrams Of Direct Products: 
 

Let eA be the identity of A and eB the identity of B. 

Given a Cayley diagram of A with generators a1, . . . , ak, and a Cayley 

diagram of B with generators b1, . . . , bl, we can create a Cayley diagram 

for A × B as follows: 

 

Vertex set: {(a, b) | a ∈ A, b ∈ B}. 

Generators: (a1, eb), . . . , (ak, eb) and (ea, b1), . . . , (ek, bl). 

Frequently it is helpful to arrange the vertices in a rectangular grid. 

For example, here is a Cayley diagram for the group ℤ4 × ℤ3 

 

 

 

 

 

 

 

 

 

What are the subgroups of ℤ4 × ℤ3? There are six (did you find them 

all?), they are: 

ℤ4 × ℤ3, {0} × {0}, {0} × ℤ3, ℤ4 × {0}, ℤ2 × ℤ3, ℤ2 × {0}. 

 

Subgroups of direct products 

 

Note: If H ≤ A, and K ≤ B, then H × K is a subgroup of A × B. 

 

For example, consider the group ℤ2× ℤ2, which is really just V4. Since ℤ2 



Notes 

91 

has two subgroups, the following four sets are subgroups of ℤ2× ℤ2: 

ℤ2× ℤ2,  {0} × {0},  ℤ2 × {0} = ⌌(   )⌍,  {0} × ℤ2 = ⌌(   )⌍, 

However, one subgroup of ℤ2× ℤ2 is missing from this list: h(1, 1)i = {(0, 

0), (1, 1)}. 

 

To make a Cayley diagram of A × B from the Cayley diagrams of A and 

B: 

1. Begin with the Cayley diagram for A. 

2. Inflate each node, and place in it a copy of the Cayley diagram for B. 

(Use different colors for the two Cayley diagrams.) 

3. Remove the (inflated) nodes of A while using the arrows of A to 

connect corresponding nodes from each copy of B. That is, remove the A 

diagram but treat its arrows as a blueprint for how to connect 

corresponding nodes in the copies of B. 

 

12.6.1.2 Quotients: 

 

To divide a group G by one of its subgroups H, follow these steps: 

1. Organize a Cayley diagram of G by H (so that we can ―see‖ the 

subgroup H in the diagram for G). 

2. Collapse each left coset of H into one large node. Unite those arrows 

that now have the same start and end nodes. This forms a new diagram 

with fewer nodes and arrows. 

3. IF (and only if) the resulting diagram is a Cayley diagram of a group, 

you have obtained the quotient group of G by H, denoted G/H (say: ―G 

mod H‖.) If not, then G cannot be divided by H. 

 

Example: ℤ3 < ℤ6 

Consider the group G = ℤ6  and its normal subgroup H = ⌌ ⌍ = {0, 2, 4}. 
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There are two (left) cosets: H = {0, 2, 4} and 1 + H = {1, 3, 5}. 

The following diagram shows how to take a quotient of ℤ6 by H 

 

 

In this example, the resulting diagram is a Cayley diagram. So, we can 

divide ℤ6 by 

h2i, and we see that ℤ6/H is isomorphic to ℤ2. 

We write this as ℤ6/H   ℤ2 

 

Theorem: When H ⊲ G, the set of cosets G/H forms a group. 

Proof: There is a well-defined binary operation on the set of left 

(equivalently, right) cosets: 

aH · bH = abH.  We need to verify the three remaining properties of a 

group: 

 

Identity. The coset H = eH is the identity because for any coset aH ∈ 

G/H, aH · H = aeH = aH = eaH = H · aH . 

 

Inverses. Given a coset aH, its inverse is a−1H, because 

aH · a
−1

 H = eH = a
−1

 H · aH . 

 

Closure. This is immediate, because aH · bH = abH is another coset in 

G/H. 

12.6.2 SEMIGROUPS 

12.6.1 Product:  
Theorem: If (S, *) and (T, *') are semigroups, then (S  T, *‖) is a 

semigroup, 
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where ‖ is defined by (s1,t1) ‖(s2,t2) = s1 * s2 , t1 * 't2  

 

Theorem: If S and T are monoids with identities eS  eT , respectively, 

then, S  T 

is a monoid with identity (eS, eT) 

 

12.6.2.2 Quotient  
Theorem: 

Let R be congruence relation on the semigroup (S, ). Consider the 

relation from S/R  S/R to S/R in which the ordered pair ([a], [b]) is, for 

a and b in S, related to [a  b]. 

a)  is a function from S/R S/R to S/R, and as usual we denote   

([a],[b]) by [a]   [b]. Thus [a]  [b] =.[a b] 

 (b) (S/R, ) is a semigroup. 

 

Proof : Suppose that ([a],[b]) = ([a‘],[b‘]). Then aRa‘ and bRb‘, so we 

must have a bRa‘ b‘, since R is a congruence relation. Thus [a b]=[a‘ 

 b‘] that is,  is a function. This means that  ; is a binary operation on 

S/R. 

 Next, we must verify that  is an associative operation. . We have 

[(a[b][c])=[a] [ a (b*c)] = [(a*b) c] by associative property of  

in S 

= [a  b]    [c]  

 = ([a] [b])  [c], 

Hence S/R is a semigroup. We call S/R the quotient semigroup or factor 

semigroup.  Observe that  is a type of ―quotient binary relation‖ on S/R 

that is constructed from the original binary relation  on S by the 

congruence relation R. 

 

Example: Let Z be the set of integers, and Zm, be the set of eduivalences 

classes generated by the equivalence relation ―congruence modulo m‖ 

for any positive integer m. 

Zm is a group with operation  where  [a]  [b] = [a+b]  

For Z2 and Z3 defined according to the above definition, write the 

multiplication table for the group Z2Z3 
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Solution : The multiplication table for the group Z2Z3 

 

 

 

12.7 HOMOMORPHISM, ISOMORPHISM 

AND AUTOMORPHISM 
 

SEMI GROUP : Homomorphism : Let (S, ) And (T, ‘) Be Two semi 

groups. An everywhere defined function f: S → T is called a 

homomorphism from (S, ) to (T, ‘) if f(ab) = f(a)  ‘f(b)  a, b   S 

Isomorphism : Let (S, ) and (T, ‘) be two semi groups. A function T 

is called a isomorphism from (S,f : S  ) to (T, ‘) if 

(i) it is one-to-one correspondence from S to T  

(ii) f(ab) = f (a)  f (b)‘   a, b  S 

(S, ) and (T, ‘) are isomorphic‘ is denoted by S  T  

 

Auto orphism: An isomorphism from a semi group to itself is called an 

is called auto orphism  of the semigoup. An isonorptism f:s→ s auto 

orphism. 

 

GROUP: 

 

Homomorphism: Let (G, ) and (G‘, ‘) be two groups. An everywhere 

defined function f: G G‘ is called a homomorphism from (G, ) to 

(G‘,‘) if 

f (a b) = f (a)  G‘  a,b  G x  
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Isomorphism : Let (G, ) and (G‘, ‘) be two groups. A function G‘ is 

called a isomorphism from (G,f : G ) to (G‘, ‘) if 

(i) it is one-to-one correspondence from G to G‘ (ii) f is onto. 

(iii) f(a  b) = f (a) ‘f (b)  a, b G 

‗(G, ) and (G‘,  G‘.‘) are isomorphic‘ is denoted by G  

 

Auto orphism: An isomorphism from a group to itself is called an  is 

calledautomorphism of the group. An isomorphism f :G G is called 

Auto orphism. 

 

Theorem 6.6 : Let f be a homomorphism from a semi group (S, ) to a 

semi group (T, ‘). If S‘ is a subsemigroup of (S, ), then 

F(S‘) = {t  T| t = f (s) for some s  S} 

The image of S‘ under f, is subsemigroup of (T, ‘). 

Proof : If t1, and t2 are any elements of F(S‘), then there exist s1 and s2 in 

S‘ with t l= f(s1) and t2 = f(s2). 

Therefore, 

t1 * t2 = f(s1)* f(s2)= f(s1 * s2) = f(s2 * s1)=t2*t1. 

 Hence (T, ') is also commutative. 

 

Example: Let G be a group. Show that the function f : G  G defined 

by f(a) = a
2 
 is a homomorphism iff G is abelian. 

 

Solution : 

Step-1 : Assume G is abelian. Prove that f : G G defined by f(a) = a
2
 

a
2
 is a homomorphism. 

GLet a,b  f(a) = a
2
, f(b) = b

2
 and f(ab) = (ab)

2
  by definition of f. 

f(ab) = (ab)
2
   

= (ab)(ab). 

= a(ba)b  associativity 

= a(ab)b  G is abelian 

= (aa)(bb)  associativity 

= a
2
b

2
 

= f(a)f(b)  definition of f 
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 f is a homomorphism. 

 

Step 2 : ∀ y = a
2
 ∊ G  a ∊ Gst 

f(a) = y = a
2 

f is onto. 

 

Step-3 : Assume, f : G G defined by f(a) = a
2
 s a homomorphism. 

Prove that G is abelian. 

Let a,b  G. 

f(a) = a
2
, f(b) = b

2 
 and f(ab) = (ab)

2
   by definition of f. 

f(ab) = f(a)f(b)    f is homomorphism 

 (ab)
2
 = a

2
b

2
     definition of f 

 (ab)(ab) = (aa)(bb)  

 a(ba)b = a(ab)b    associativity 

 ba = ab     left and right cancellation 

laws 

 G is abelian. 

 

CHECK YOUR PROGRESS 2 

1. Explain Groups? 

 

 

2. Explain the Quotient of Group. 

 

 

3. What do you understand by homomorphism of groups 
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Example: Let G be a group and let a be a fixed element of G. Show that 

the function fa : G→ G  defined by fa (x) = axa
-1

 for xG is an 

isomorphism. 

 

Solution : 

Step-1: Show that f is 1-1. 

fa (x) = axa
-1

 

fa (x) = fa (y)   for x, y ∊ G 

axa
-1

 = aya
-1

  definition of f 

x = y    left and right cancellation laws 

 f is 1- 1 

 

Step 2 :    y = axa
-1

 ∊ G  x G s.t 

fa (x) = axa
-1

 

 f is onto 

 

Step-3 : Show that f is homomorphism. 

For x, y  G  

f(x) = a * x* a 
-1

   f(y) = a * y* a 
-1

   and  f(x*y) 

= a * (x*y)*a
-1

 

Consider f(x*y) = a * (x*y)*a
-1

 

f(x*y) = a * (x*e* y)*a
-1

  e G is identity 

= a * (x* a
-1

* a* y)*a
-1

 a
-1

*a = e 

= (a * x* a
-1

) * (a * y* a
-1

)   associativity 

f(x*y)   f(x)*f (y)  

 f is homomorphism.  

 Since f is 1-1 and homomorphism, it is isomorphism. 

 

12.8 SOLVED EXAMPLES 
 

Example: Determine whether the following set together with the binary 

peration is a semigroup, a monoid or neither. If it is a monoid, specify 

the identity. If it is a semigroup or a monoid determine whether it is 

commutative. 
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i) A = set of all positive integers. a  b  max{ a, b }  i.e. bigger of a and 

b 

ii) Set S = {1, 2, 3, 6, 12} where a  b=  G C D (a, b)  

 

Solution : 

i) A = set of all positive integers. a  b  max{ a, b } i.e. bigger of a and 

b. 

 

Closure Property: Since Max {a, b} is either a orb   a  b  A   . 

Hence closure property is verified. 

Associative Property : 

Since a  (bc)  = max{{ a ,b }, c}  max { a, b, c } 

       = Max{a,{b, c} } = (a.b).c 

  is associative. 

 (A, ) is a semigroup. 

 

Existence of identity :  1 A is the identity because 

1.a = Max{ 1,a}= a    a A 

 (A, ) is a monoid. 

 

Commutative property : Since Max{a, b) = max{b, a) we have  a  b  

b  a  Hence  is commutative. 

Therefore A is commutative monoid. 

 

ii) Set S = { 1,2,3,6,12} where a  b G C D ( a,b ). 
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Closure Property : Since all the elements of the table  S, closure 

property is satisfied. 

 

Associative Property :Since 

a  (b  c)=  a  (b  c)=  a  GCD {b, c} GCD {a, b, c}        ( ) ( ) 

{ , } { , , }  

And (a  b)  c = GCD { a ,b } c =  GCD  { a ,b, c }  

 a  (b   c)   (a  b)  c 

  is associative. 

 (S, ) is a semigroup. 

 

Existence of identity:  From the table we observe that 12  S is the 

identity 

 (S, ) is a monoid. 

Commutative property : Since GCD{a,b}= GCD{b,a) we have 

a b b a    . Hence  is commutative. 

Therefore A is commutative monoid 

 

Example: State and prove right or left cancellation property for a group. 

Solution : Let (G, ) be a group. 

(i) To prove the right cancellation law i.e. ab  c  b  a  c     

 Let a, b, c  G. Since G is a group, every element has inverse in G 

  b 
–1

   G 

Consider a  b  c  b 

Multiply both sides by from the right. 

:. (a  b)  b 
–1

 ( c  b)  b 
–1

    

 a  (b  b 
–1

 )= c (b  b 
–1

 )   Associative property 

 e    a  e  c      b  b 
–1

 = e G   

 a = c     e  G is the identity 

 

(ii) To prove the left cancellation law i.e. a  b  c  b  a  c     

G: Since G is a group, every element has inverse in G.Let a, b, c 
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 a 
–1

  G 

Consider a b   a   c 

Multiply both sides by a 
–1

 from the left 

 a 
–1

  (a b) = a 
–1

  (a  c)  

 (a 
–1

  a) b = (a 
–1

  a) c   Associative property 

 e  b  e  c        a 
–1

  a   e  G  

 b = c     e  G is the identity 

 

Example: Show that if every element in a group is its own inverse, then 

the group must be abelian. 

 

Solution : Let G be a group. 

 For a G, a 
–1
 G   

 Consider (ab) 
–1

 

 (ab) 
–1

=b
–1

a
–1

 reversal law of inverse. 

 ab = ba every element is its own inverse 

  G is abelian. 

 

Example: Consider the group G = {1,2,3,4,5,6} under multiplication 

modulo 7.  

(i) Find the multiplication table of G 

(ii) Find 2–1, 3–1, 6–1. 

(iii) Find the order of the subgroups generated by 2 and 3. 

(iv) Is G cyclic? 

Solution : (i) Multiplication table of G 

Binary operation  is multiplication modulo 7. 
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From the table we observe that 1 G is identity. 

(ii) To find 2
–1

, 3
–1

, 6
–1

. 

From the table we get 2
–1

= 4, 3
–1

= 5, 6
–1 

= 6 

To find the order of the subgroups generated by 2. 

Consider 2° = 1 = Identity, 2
1
 = 2; 2

2
 = 4, 2

3
 = 1 = Identity 

< 2 > = {2
1
, 2

2
, 2

3
} 

 Order of the subgroup generated by 2 =3 

To find the order of the subgroups generated by 3. 

Consider 3° = 1 = identity, 3
1
 = 3, 3

2
 = 2, 3

3
 = 6, 3

4
 = 4, 3

5
 = 5, 3

6
 = 1 = 

Identity 

< 3 > = {3
1
, 3

2
, 3

3
, 3

4
, 3

5
, 3

6
} 

 Order of the subgroup generated by 3 = 6 

(iv) G is cyclic because G = < 3 >. 

 

 

12.9 CODING OF BINARY 

INFORMATION AND ERROR 

DETECTION 
 

Important Terminology: 

Let us choose an integer n > m and one-to-one function e: B
m 
 B

n
. 

1) Encoding Function : 

The function e is called an (m, n) encoding function. It means that every 

word in B
m

 as a word in B
n
. 

 

2) Code word :  If b B
m

  then e(b) is called the code word 

 

3) Weight : For x  B
n
  the number of 1‘s in x is called the weight of x 

and is denoted by |x| . 

 

Example: e.g. i) x 10011 ∊ B
5
  w(x) = 3 

 

4) x  y    Let x,y ∊ B
n
 is a sequence of length n that has 1‘s in those 

positions x & y differ and has O‘s in those positions are the same. x & y 
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The operation + is defined as then i.e. 0 + 0 = 0  0 + 1 = 1  1 + 

1= 0  1 + 0 = 1 

Example:  If x,y ∊ B
5
 

x = 00101, y = 10110 

x  y = 10011 

w (x  y) = 3 

 

5) Hamming Distance : 

Let x, y Bm.The Hamming Distance x,y between x and y isthe 

weight of x  y.  It is denoted by |x  y |. . e.g. Hamming distance  

between x & y can be calculated as follows :  

if x = 110110,   y = 000101 

 x  y = 110011 & |x  y | = 4 

 

6) Minimum distance : 

Let x, y B
n
 then minimum distance = min d (x,y) / x,y B 

n
 . Let x1, 

x2 ---xn  are the code words, let any xi i=1,---n is a transmitted word and 

y be the corresponding received word. Then y x k if d (xk ,y) is the 

minimum distane for k = 1, 2, --- n. This criteria is known as minimum 

distance criteria. 

 

7) Detection of errors : 

Let e : B
m 

  B
n
  m  n  is an encoding function then if minimum 

distane of e is ( k + 1) then it can detect k or fewer errors. 

 

8) Correction of errors : 

Let e : B
m 

  B
n
  m  n  is an encoding function then if minimum 

distance of e is (2k + 1) then it can correct k or fewer errors. 

 

Weight of a code word :It is the number of 1‘s present in the given code 

word. 

 

Hamming distance between two code words : Let x=x1, x2,...x m and 

y=y1, y2,...ym be two code words. The Hamming distance betweenthem  

x y ,  , is the number of occurrences such that  xi ≠ yi. for i = 1, m . 
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Example: Define weight of a codeword. Find the weights of the 

following. 

a. x   010000   b. x   11100 

 

Solution: a. |x|   |010000| = 1  

b. |x|   |11100| = 3 

 

Example: Find the Hamming distance between the codes. 

x  010000, y = 000101 

Solution : Hamming distance : 

(x,y) =  |x  y | =  |010000  000101 | = |010101| = 3 

 

Example: The following encoding function f: B
m
 B

m+1 
is called the 

parity m,  m 1  check code. If b= b1 b2… bm ∊ B
m
 define e(b) = b1 b2… 

bmbm+1    where 

bm+1    = 0 if |b| is even.  

           = 1 if |b| is odd. 

Find e(b if (a) b = 01010  (b) b = 01110 

 

Solution: (a) e(b) = 01010  (b) e(b) = 011101 

 

Example 7.6 : Let e: B
2 → B

6
 is an (2,6) encoding function defined as 

e(00) = 000000, e(01) = 011101 

e(10) = 001110, e(11) = 111111 

a) Find minimum distance. 

b) How many errors can e detect? 

c) How many errors can e correts? 

 

Solution: Let x0, x1, x2, x3 ∊ B6 where x0 = 000000, x1 = 011101, 

x2= 001110, x3=  111111 2 3. 

w(x0  x1) = w(011101) = 4 

w(x0  x2) = w (001110) = 3 

w(x0  x3) = w(111111) = 6 

w(x1  x2) = w(010011) = 3 
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w(x1  x3) = w (100010) = 2 

w(x2  x3) = w(110001) = 3 

 

Minimum distance = e = 2 

 

d) Minimum distance = 2 

An encoding function e can detect k or fewer errors if the minimum 

   k 1 2 k 1 distance is k + 1.  

 

The function can detect 1 or fewer (i.e. 0) error. 

e) e can correct k or fewer error if minimum distance is 2k + 1. 

2k + 1 = 2 

k = 1/2 

 e can correct1/2  or less than ½ i.e. 0 errors. 

 

Group Code: An m, n encoding function e: B
m
 →B

n
  is called a group 

code if range of e is a subgroup of B
n
 ) i.e. (Ran (e), ) is a group. Since 

Ran (e) CB
n
  and if (Ran (e), )  is a group then Ran(e) is a subgroup of 

B
n
. If an encoding function e: B

m
 →B

n
  (n < n) is a group code, then the 

minimum distance of e is the minimum weight of a nonzero codeword. 

 

12.10 DECODING AND ERROR 

CORRECTION: 
 

Consider an m, n encoding function e: B
m
 →B

n
  , we require an (n,m) 

decoding function associate with e as d : B
n
 → B

m
. The method to 

determine a decoding function d is called maximum likelihood 

technique. 

Since |B
m

| = 2
m

 m. 

Let xk ∊ B
m

 be a codeword, k = 1, 2, ---m and the received word is y 

then. 

Min  1 ≤ k ≤2
m 
d  xk, y) = d(xi, y)  for same i then xi  is a codeword 

which is closest to y. If minimum distance is not unique then select on 

priority 
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MAXIMUM LIKELIHOOD TECHNIQUE: 

Given an m, n encoding function e: B
m
 →B

n
 we often need to 

determine an n, m decoding function d: B
n
 → B

m
. associated with e. 

We now discuss a method, called the maximum likelihood techniques, 

for 

determining a decoding function d for a given e. Since Bm has 2
m 

elements, there are 2
m

 code words in B
n
 . We first list the code words in a 

fixed order. 

 

 

 

If the received word is x1, we compute  (x
(i) 

, x1) for 1 ≤ i ≤ 2
m 

and 

choose the first code 

word, say it is x
(s)

, 

such that 

 

That is, x
s

 is a code word that is closest to x1 , and the first in the list. If 

x e b s    , we define the maximum likelihood decoding function d 

associated with e by 

d(xt) = b 

 

Example: Define group code. Show that 2, 5 encoding function e: B
2
 

→ B
5
 defined by e (00) = 0000, e(10) = 10101, e (11)=  11011 is a group 

code.   

Solution : Group Code 
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Since closure property is satisfied, it is a group code. 

 

12.11 SUMMARY 
 

Coding theory has developed techniques to detect and correct errors. In 

today‘s modern world of communication, data items are constantly being 

transmitted from point to point and coding theory has huge application in 

transmitting data. 

 

12.12 KEYWORDS 
 

1. Positive Integers: The positive integers are the numbers 1, 2, 3, ... 

(OEIS A000027), sometimes called the counting numbers or natural 

numbers. 

 

2. Binary numbers:In mathematics and digital electronics, a binary number is 

a number expressed in the base-2 numeral system or binary numeral system, 

which uses only two symbols: typically "0" (zero) and "1" (one). 

 

3. Coding and decoding:  In the mathematical literature an encoding (coding) 

is a mapping of an arbitrary set into the set of finite sequences (words) over 

some alphabet , while the inverse mapping is called a decoding. 

 

4. Error : in applied mathematics, the difference between a true value 

and an estimate, or approximation, of that value. 

 

12.13 QUESTIONS FOR REVIEW 
 

1. Let G be a group. Show that the function f: G  G defined by 

f(a) = a
-1 

is an isomorphism if and only if G is abelian. 

2. Let G be a group of real numbers under addition, and let G‘ be 

the group of positive numbers under multiplication.Let f: G  G 

be defined by f(x) = e
x
. Show that f is an isomorphism from G to 

G‘ 

3. Define Hamming distance. Find the Hamming distance between 

the codes x = 001100, y  = 010110. 



Notes 

107 

4. Let d be the 4, 3 decoding function defined by d : B
4
 → B

3
 

If y =  y1y2…ym+1,  d(y) = y1y2…ym.  Determine d(y) for the word 

y is B
4
 

 

a) d(y)= 0110  b) d(y) 1011  

 

5. Consider the 2, 4 encoding function e as follows. How many 

errors will e detect? 

e (00) = 0000, e (01) = 0110, e (10) = 1011, e (11) = 1100  
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12.14 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Explain the concept-- 12.1 

2. Explain the concept –12.2 & 12.3 

3. Explain the concept --  12.6.1 

4. Explain the concept --- 12.6.1.2 

5. Explain the concept of Homomorphism of group –12.7 
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UNIT 13: GRAPH THEORY I 
 

STRUCTURE 

 

13.0 Objectives 

13.1 Concept 

13.2 Types 

 13.2.1 Subgraphs 

 13.2.2 Complement Of Graphs 

 13.2.3 Intersection Of A Graph 

 13.2.4 Cycles And Wheels 

 13.2.5 Bipartite Graphs 

13.3 Graph Isomorphism 

13.4 Reachability And Connectedness 

13.5 Euler & Hamiltonian Path 

13.6 Summing Up 

13.7 Keywords 

13.7 Question for review 

13.8 Suggested Readings 

13.9 Answer to check your progress 

 

13.0 OBJECTIVE 
 

 What is Graph and its different types? 

 Concept of Graph Isomorphism 

 Concept of Reachability & connectedness. 

 What is Euler & Hamiltonian Path? 

 

13.1 CONCEPT: 
 

A graph G is  a pair of sets (   ) where V is a set of vertices and E is 

set of edges. If G is a directed graph, the elements of E are ordered pairs 

of vertices. In this case an edge (    )is said to be from v to v’ and to 

join v to v’. If G is non-directed graph the elements of E are unordered 
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pairs (sets) of vertices. In this case an edge {v, v’} is said to join v and v’ 

or to be between v and v‘. 

An edge that is between the vertex and itself is called a self-loop (loop 

for short). 

A graph with no loops is said to be simple or loop-free. 

If G is a graph, V(G) and E(G) denotes its sets of vertices and edges, 

respectively. Ordinarily, V(G) is assumed to be a finite set, in which case 

E(G) must also be finite and so G is finite.If G is finite, |V(G)| denotes 

the number of vertices in G, and is called the order of G.  

In similar way, if G is finite , |E(G)|denotes the number of edges in G, 

and is called the size of G. If more than one edge join a pair of vertices, 

the result is called as a multigraph. 

 

Example 1:  

 In the below figure 7.1(a) and (b), they both demonstrate two 

nondirected graphs. The graph G shown in (a) is not simple as 

there is a loop incident on vertex c. By contrast, the graph G’ 

shown in (b) is simple. 

 On the other hand in (c) graph G” represents a multigraph since 

there are three edges between the vertices b and c. 

 From the figure, it is clear that V(G) = {a, b, c, d} and E(G) = 

{{a, b}, {a, c},{b, c}, {c, c},{a, d},{c, d}}. Also, V(G) = V(G’) 

and E(G‘) = E(G) – {{c, c}}. 

 To list the edges of G” it is required to indicate the multiplicity 

of edges between b and c. 

For example, we can list E(G”) = {{a, b}, {a, c},3{b, c},{a, 

d},{c, d}}, where 3{b, c} implies that there are three edges 

between b and c. 

The graph G has order 4 and size 6 while G‘ has order 4 and size 

5 and multigraph G‖ has order 4 and size 7 respectively. 
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Figure 13.1: a) A non-simple graph, b) A simple graph, c) A 

multigraph d) A symmetric directed graph 

 

CONCEPTS:  

 In a directed graph (v, v’) is said to be incident from v, and to be 

incident tov’. In a particular graph, the number of edges incident 

to a vertex is called the in-degree of the vertex and it is denoted 

by        ( )  and the number of edges incident from it is 

called its out-degree and it is denoted by        ( ) . Th 

degree of vertex is determined by counting each loop incident on 

it twice and each other edge once. The degree of a vertex v in a 

graph G may be denoted by        ( ) or     ( ) and if it is 

clear from context, the subscript g can be omitted. 
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[Note: In the case of a nondirected graph an unordered pair {v, 

v’} is an edge incident on v and v’.] 

 A vertex of degree zero is called an isolated vertex. 

 If there is an edge incident from v to v‘ or incident on v and v‘, 

then v and v‘ are said to be adjacent/ neighbours. 

 The minimum of all degrees of the vertices of a graph G is 

denoted by  ( ), and the maximum of all degrees of the vertices 

of a graph G is denoted by  ( ). If  ( )   ( )   , which 

implies if each vertex of G has degree k, then G is said to be k-

regular or regular of degree k. 

 If            are the vertices of G, then the sequence 

(          ), where          (  ), is the degree sequence 

of G. Generally, the vertices are ordered in such a way the degree 

sequence is monotone increasing  ( )    ≤   ≤  ≤    

 ( ) 

 

Example 2: Refer the diagram 13.1 (a), the vertex c of the graph G has 

degree 5 and the degree sequence of G is (2, 2, 3, 5) while in diagram 

13.1(b) the degree of c in G‘ is 3 and the degree sequence of G‘ is (2, 2, 

3, 3). 

 

THEOREM: If   *       + is the vertex set of nondirected graph G, 

then 

∑   (  )   | |

 

   

  

If G is a directed graph, then 

∑    (  )  ∑    (  )

 

   

  | |

 

   

  

 

PROOF: When the degrees are summed, each edge contributes a count of 

one to the degree of each of the two vertices on which edge is incident. 

 

 

Corollary 1: In any nondirected graph there is an even number of 

vertices of odd degree 
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Proof: Let V’ be the set of vertices odd degree and let V’’ be the set of 

vertices of even degree. Then  

∑    ( )  ∑    ( )
 ∈  

 ∑    ( )
 ∈  

  | |
 ∈ ( )

 

 

As ∑    ( ) ∈   is even then ∑    ( ) ∈   is also even, indicating that 

|W| is even and hence the corollary is proved. 

 

Corollary 2: If    ( ) is the minimum degree of all the vertices of a 

nondirected graph G, then 

 | | ≤ ∑    ( )

 ∈ ( )

  | | 

In particular, if G is a k-regular graph, then 

 | |  ∑    ( )

 ∈ ( )

  | | 

 

CONCEPTS: 

 In a nondirected graph G a sequence P of zero or more edges of 

the form *     +, *     +,…,*       + also represented as 

(          ) is called a path from    to   ; where    is 

the initial vertex and   is the terminal vertex and they both are 

called as endpoints of the path P.  

 If      , then P is called a closed path and if   ≠    then P is 

an open path. 

 In general, path P is a graph itself where 

 ( )  *          + ⊆  ( ) and 

 ( )  **     + *     +   *       ++ ⊆  ( ).  

 Also  ≤ | ( )| ≤     and  ≤ | ( ) ≤  |  if there are 

repeated vertices then |V(P)| may be less than n + 1 and if there 

are repeated edges then E(P) < n. 

 Incase if P has no edges at all that implies the length of P is zero 

where P is called a trivial path and V(P) is a singleton set *  +. 

 A path P is simple if all edges and vertices on the path are distinct 

except possibly the endpoints. So an open simple path of length 

of n has n + 1 distinct vertices and n distinct edges, while a closed 
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simple path of length n has n distinct vertices and n distinct 

edges. 

 A path of length   1 with no repeated edges and whose endpoints 

are equal is called a circuit and a circuit may have repeated 

vertices other than the endpoints.  

 A cycle is a simple circuit with no other repeated vertices except 

its endpoints and in particular, a loop is a cycle of length 1. 

 If two paths in a graph share no common edges then they are said 

to be edge-disjoint and if they share no common vertices then 

they are known as vertex-disjoint. 

 

Example 3: In Fig 13.1 (a) the path {c, c} is cycle of length 1 while the 

sequence of edges {a, b}, {b, c}, {c, a} and {a, d}, {d, c}, {c, a} form 

cycles of length 3. The path {a, b}, {b, c}, {c, d}, {d, a} is a cycle of 

length 4; it is not a cycle because the sequence of vertices a – b – c – c – 

a includes more than one repeated vertex. Also the sequence of edges {a, 

b}, {b, c}, {c, a},{a, d}, {d, c}, {c, a}forms a closed path of length 6, but 

this path is not a circuit because the edge {c, a} is repeated twice. 

 

THEOREM: In a graph G, every v – v’ path contains a simple v – 

v’path. 

 

PROOF: If a path is closed path, then it certainly contains the trivial 

path. Let us assume P is an open v – v’ path. We will use induction 

method. If P has length one, then P is itself a simple path. Consider that 

all open v – v’paths of length k, where  ≤  ≤    contains a simple v – 

v’path and P is the open v – v’path *     +  *       + where      

and        incase if P has repeated vertices and if not then P is simple 

v – v’path. 

Other way round if there are repeated vertices in P, let x and y be distinct 

positive integer where x < y and      . If the closed path       is 

removed from P, an open path P‘ having length≤   since atleast the edge 

*       + was deleted from P. Thus by inductive hypothesis, P‘ contains 

a simple path v – v’ path and so does P. 
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Concept: An edge labelling of a graph G is a function    ( ) →  , 

where D is some domain of labels. A vertex labelling of G is a function 

   ( ) →  . 

CHECK YOUR PROGRESS 1 

1.  Define in degree and out degree 

 

 

2. Explain vertex disjoint with example 

 

 

3. Explain the concept of initial vertex 

 

 

 

13.2 TYPES: 

13.2.1 SUBGRAPHS: 

If G and H are graphs then H is sub-graph of G if and only if V(H) is a 

subset of V(G) and E(H) is a subset of E(G). A subgraph H of G is called 

spanning subgraph of G if and only if V(H) = V(G). If W is any subset 

of V(G), then the subgraph induced by W is the subgraph H of G 

obtained by taking V(H) = W and E(H) to be those edges of G that join 

pair of vertices in W. 

 

Example: Consider the graph shown in figure13.2 as follows: 
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Figure 13.2: Graphs                        

 

 The graph    as shown in fig (b) is a subgraph of graph G as 

shown in fig (a) with  (  )  *           +. 

 The graph     as shown in fig (c) is a spanning subgraph of G. 

 The graph      as shown in fig (d) is the subgraph induced by the 

set W= *           +. 

 The graph       shown in fig (e) is not a subgraph of G because 

the edge *     + is not in E(G). 

 

A simple nondirected graph with n mutually adjacent vertices is called a 

complete graph on n vertices, and may be commonly represented as   . 

A complete graph on n vertices has n.(n – 1) / 2 edges and n – 1is the 

degree of each of its vertices.  

13.2.2 Complement Of A Graph: 

If H is a subgraph of G, the complement of H in G, denoted by  ̅( ),  is 

the subgraph    ( ); which simply means that we subtracted the 

edges of H from G. If H is a simple graph with n vertices the 

complement  ̅ of H is the complement of H in   . 

It is implied from the above concept that  ( ̅)   ( ) and any two 

vertices are adjacent in  ̅ if and only if they are not adjacent in H. Note 
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that the degree of vertex in  ̅ plus its degree in h is n – 1 , where n = 

|V(H)|. 

 

Example: A graph and its complement is as shown in figure 13.3  

 

 

Figure 13.3: A graph and its complement 

 

13.2.3 Intersection Of A Graph: 

Let G and G’be two graphs. The intersection of G and G’, written as 

    , is the graph whose vertex set is  ( )   (  ) and whose edge 

set is  ( )   (  ). Similarly, the union of G and G’, is the graph with 

vertex set  ( ) ∪  (  ) and edge set  ( ) ∪  (  ). 

If G is a simple graph with n vertices, then  ∪  ̅ is a complete graph on 

n vertices. 

13.2.4: Cycles And Wheels: 

A cycle graph of order n is a connected graph whose edges form a cycle 

of length n and they are represented as   .  

A wheel of order n is a graph obtained by joining a single new vertex 

(the ‗hub‘) to each vertex of a cycle graph of order n – 1 and are denoted 

by   .  
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A path graph of order n is obtained by removing an edge from a    

graph and denoted by   . 

A null graph of order n is a graph with n vertices and no edges. 

 

Example: Graphs of classes             and    are shown in Figure 

13.4 

 

 

Figure 13.4:             and    

13.2.5: Bipartite Graph: 

It is a non-directed graph whose set of vertices can be partitioned into 

two sets X and Y in such a way that each edge joins a vertex in X to a 

vertex in Y. A complete bipartite graph is a bipartite graph in which 

every vertex of X is adjacent to every vertex of Y. The complete bipartite 

graphs which may be partitioned into X and Y as above such that 

| |    and | |    are denoted by      (where  ≤  ).  

Any graph like      is called a star graph. 

Example: Figure 13.5 (a), (b) and (c) represents the graph of     , 

    and      
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13.3 GRAPH ISOMORPHISM: 
 

Two graphs G and G‘ are isomorphic if there is a function    ( ) →

 (  ) from the vertices of G to the vertices of G‘ such that  

(i) f is one-to-one 

(ii) f is onto, and 

(iii) for each pair of verticesuandvof G, *   + ∈  ( )if and only 

if* ( )  ( ) ∈  (  )+ 

Any function f with the above three properties is called an isomorphism 

from G to G‘. The condition (iii) implies that vertices u and v are 

adjacent in G if and only if f(u) and f(v) are adjacent in G‘ and function f 

preserves adjacency. 

If the graphs G and G‘ are isomorphic and f is an isomorphism of G to 

G‘, then the only difference between them is the only name of the 

vertices. If we change the names of the vertices of G‘ from f(v) to v for 

each  ∈  ( ), then G‘ with the new vertices name would be identical to 

the graph G as they both would have same vertices and edges. 

If several isomorphism f between G and G‘ exists then we can make 

following conclusions: 

i. | ( )|  | (  )| 

ii. | ( )|  | (  )| 

iii. If  ∈  ( ) then     ( )      ( ( ))  and the degree 

sequence of G and G‘ are the same. 

iv. If {v, v} is a loop in G, then {f(v),f(v)} is a loop in G‘, and if 

                      is a cycle of length k in 

G, then  (  )   (  )   (  )     (    )   (  ) is a 

cycle of length k in G‘. The cycle vectors of G and G‘ are 

equal, where the cycle vector of G is by definition the vector 

(         ) where   is the number of cycles in G of length i. 

The value      for simple graphs and    is non-zero only 

for multigraphs. 

Discovering Isomorphism: 
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To determine whether the two given graphs are isomorphic or not is 

known as the isomorphic problem and for arbitrary graphs approximately 

   operations are required to resolve the isomorphic problem and n 

indicates the number of vertices. 

Once we have one-to-one onto map    ( ) →  (  ) where G and G‘ 

are two graphs with same number of vertices, the process of verifying an 

isomorphism is quite simple. Also the adjacency matrix can be employed 

as a bookkeeping tool for recording all the adjacencies. 

Consider            are the vertices of G, then the adjacency matrix for 

this ordering of the vertices of G is the     matrix A, where ij
th

 entry 

 (   ) of A is 1 if the edge *     + is an edge of G; otherwise,  (   )  

 . Thus, A is symmetric matrix each of whose entries is either 0 or 1. If 

there is a loop at    1 will appear on the i
th

 position of the diagonal of A. 

Entries of A can be rearranged by changing the ordering of the vertices 

of G. The following fact is implied from the above discussion as follows: 

Suppose that G and G‘ are two graphs and that    ( ) →  (  ) is one-

to-one onto function. Let A be the adjacency matrix for the vertex 

ordering            of the vertices of G.Let A‘ be the adjacency matrix 

for the vertex ordering  (  )  (  )   (  ). Then f is an isomorphism 

from V(G) to V(G‘) if the adjacency matrices A and A‘ are equal. 

Example: The graph G and G‘ of figure 13.6 are isomporphic. 

 

 

 

 

 

 

 

 

 Figure 13.6: Isomorphic Graphs 

The above given graphs G and G‘ are isomorphic, then the vertices b, d 

and e must be mapped to the vertices b‘, d‘ and e‘ as these are the unique 

vertices of degree 2, 5 and 1. We have only 2 maps to consider instead of 

5! maps. We can verify the map f which maps a to c‘, b to b, c to a‘, d to 

d‘ and e to e‘ is an isomorphism because the adjacency matrix for G‘ is 
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as given below for the ordering  ( )      ( )      ( )      ( )  

    ( )     is 

 

[
 
 
 
 
   
   
   
             
             

  
  
  

             
             ]

 
 
 
 

 

[NOTE: In some cases at least, the degree sequence of a graph can be 

used to shorten the search for isomorphisms. If the simple graphs G and 

G‘ each have vertices of degree i, then there are (   ),(   )  (     ) 

one-to-one onto maps from V(G) to V(G‘) that will map the    vertices 

of degree i to vertices of degree i which is more manageable than n!. ] 

 

Determining when graphs are not isomorphic: 

We need to figure out such property of the isomorphic graphs which 

other graphs do not share and we can easily state that they are not 

isomorphic. Like if we consider two graphs G and G‘ which had 

different number of vertices or different degree sequences then they are 

not an isomorphic. But in certain cases even though two graphs have the 

same degree sequences but still they are not an isomorphic. 

So in such situation we classify the vertices into classes according to the 

properties related to isomorphism. If the two graphs are isomorphic the 

vertices of a given class in one graph must correspond to the vertices of 

the same class in the other graph. If the vertices in these classes do not 

correspond, then the graphs are not isomorphic. 

 

Check Your Progress 2 

1. Define the following terms a.wheel 

b. complement of graph 
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2. What do you understand by Graph Isomorphism? 

 

 

 

13.4 REACHABILITY AND 

CONNECTEDNESS: 
 

REACHABILITY: 

Concept: A vertex y in a digraph D = (V, A) is said to be reachable from 

a vertex x if there is a directed walk from x to y. 

 

Remark. It is possible for a vertex to be not reachable from itself. 

Example: In the below figure, the vertices 2 and 3 are reachable from 

the vertex 1, while the vertex 5 is reachable from the vertices 4 and 5. 

 

 

 

 

Figure 13.7: Diagraph 

CONNECTEDNESS: It consist of following sub points 

 

Connected Components:Two vertices in a graph are said to be 

connected when there is a path that begins at one and ends at the other. 

By convention, every vertex is considered to be connected to itself by a 

path of length zero. The diagram in Figure 7.8 looks like a picture of 

three graphs, but is intended to be a picture of one graph. This graph 

consists of three pieces (subgraphs). Each piece by itself is connected, 

but there are no paths between vertices in different pieces. 
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Figure 13.8: One graph with 3 connected components 

A graph is said to be connected when every pair of vertices are 

connected. These connected pieces of a graph are called its connected 

components. In other words, a connected component is the set of all the 

vertices connected to some single vertex. So a graph is connected if it has 

exactly one connected component. The empty graph on n vertices has n 

connected components. 

How Well Connected?  

Imagine a graph as modelling cables in a telephone network, or 

oil pipelines, or electrical power lines, then we are interested in 

connectivity that survives component failure as well. A graph is called k-

edge connected if it takes at least k ―edge-failures‖ to disconnect it. Let 

us define this concept as follows: 

Concept: Two vertices in a graph are k-edge connected if they remain 

connected in every subgraph obtained by deleting k – 1 edges. A graph 

with at least two vertices is k-edge connectedif every two of its vertices 

are k-edge connected.  

So 1-edge connected is the same as connected for both vertices and 

graphs. In other word a graph is k-edge connected is that every subgraph 

obtained from it by deleting at most k – 1 edges is connected.  

Consider the graph in the below figure 7.9, the vertices B and E are 2-

edge connected, G and E are 1-edge connected, and no vertices are 3-

edge connected. The graph as a whole is only 1-edge connected. More 

generally, any simple cycle is 2-edge connected, and the complete graph, 

  is (n – 1) edge connected.  

 

 

 

 

Figure 13.9: A graph with 3- simple cycles 
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If two vertices are connected by k edge-disjoint paths (that is, no two 

paths traverse the same edge), then they are obviously k-edge connected.  

 

Connection by Simple Path 

LEMMA: If vertex u is connected to vertex v in a graph, then there is a 

simple path from u to v.  

PROOF:Since there is a path from u to v, there must, by the Well-

ordering Principle, be a minimum length path from u to v. If the 

minimum length is zero or one, this minimum length path is itself a 

simple path from u to v. Otherwise, there is a minimum length path  

           

from     to     where   . We claim this path must be simple. 

To prove the claim, suppose to the contrary that the path is not simple, 

that is, some vertex on the path occurs twice. This means that there are 

integers i,j such that  ≤  ≤  ≤  with     . Then deleting the 

subsequence  

         

yields a strictly shorter path  

                         

from u to v, contradicting the minimality of the given path. 

 

COROLLARY: For any path of length k in a graph, there is a simple 

path of length at most k with the same endpoints. 

 

The Minimum Number of Edges in a Connected Graph: 

 

THEOREM: Every graph with v vertices and e edges has at least   

 connected components.  

 

PROOF:  

We use induction on the number of edges, e. 

Let P(e) be the proposition that for every v, every graph with v vertices 

and e edges has at least     connected components.  
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Base case (e =0): In a graph with 0 edges and v vertices, each vertex is 

itself a connected component, and so there are exactly     

 connected components. So P(e) holds.  

Inductive step: Now we assume that the induction hypothesis holds for 

every e-edge graph in order to prove that it holds for every (e + 1)-edge 

graph, where   . Consider a graph, G, with e+1 edges and k vertices. 

We want to prove that G has at least   (   )connected components. 

To do this, remove an arbitrary edge a—b and the resulting graph is G‘. 

By the induction assumption, G‘ has at least    connected 

components. Now add back the edge a—b to obtain the original graph G. 

If a and b were in the same connected component of G‘, then G has the 

same connected components as G‘, so G has at least       (  

 )components.  

Otherwise, if a and b were in different connected components of G‘, then 

these two components are merged into one in G, but all other 

components remain unchanged, reducing the number of components by 

1. Therefore, G has at least (   )      (   )connected 

components. So in either case, P(e+1) holds. And thus the theorem now 

follows by induction. 

 

COROLLARY: Every connected graph with v vertices has at least 

   edges. 

 

13.5 EULER & HAMILTON PATH 
 

Euler Path: 

An Euler path in a multigraph is a path that includes each edge of the 

multigraph exactly once and intersects each vertex of the multigraph at 

least once. A multigraph is said to be traversable if it has an Euler path. 

An Euler circuit is an Euler path whose endpoints are identical. (If an 

Euler path is a sequence of edges            corresponding to the 

sequence of pairs of vertices (     ) (     )   (       ), then the      

are all distinct, and      ) 

A multigraph is said to be an Eulerian multigraph if it has an Euler 

circuit. 
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THEOREM: A non-directed multigraph has an Euler path if and only if 

it is connected and has 0 or exactly 2 vertices of odd degree. In the latter 

case, the two vertices of odd degree are the endpoints of every Euler path 

in the multigraph. 

 

PROOF: Let a multigraph G have an Euler path, so G must be 

connected. Every time the Euler path meets a vertex it traverses two 

edges which are incident on the vertex and which have not been traced 

before. The degree of all other vertices must be even except for the two 

endpoints of the path. The degree is odd if the endpoints are distinct. If 

the two endpoints coincide, their degrees are even and the path becomes 

an Euler circuit. 

 Let us construct an Euler path by starting at one 

of the vertices of odd degree and traversing each edge of G exactly once. 

Let us start at an arbitrary vertex as there are no vertices of odd degree. 

For every vertex of an even degree the path will enter the vertex and 

leave the vertex by tracing an edge that was not traced before. Thus, the 

construction will return to the vertex where it started or terminate at a 

vertex with an odd degree and such tracing will produce an Euler path if 

all edges in G are traced exactly once this way. 

 

If all the edges in G are not traced, we will remove the traced edges and 

obtain the subgraph G‘ induced by the remaining edges. The degrees of 

all vertices in this subgraph must be even and at least one vertex must 

intersect with the path, since G is connected. We can construct a new 

path which will be a cycle starting from one of the vertices as all the 

degrees are even. This path can joined into the previous path. The 

argument can be repeated until a path that traverses all edges in G is 

obtained. 

  

Corollary: A non-directed multigraph has an Euler circuit if it is 

connected and all of its vertices are of even degree. 
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Corollary: A directed multigraph G has an Euler path if it is unilaterally 

connected and the in-degree of each vertex is equal to its out-degree, 

with the possible exception of two vertices, for which it may be that the 

in-degree of one is larger than its out-degree and the in-degree of the 

other is one less than its out-degree. 

 

Corollary: A directed multigraph G has an Euler circuit if G is 

unilaterally connected and the in-degree of every vertex in G is equal to 

its out-degree. 

 

Hamiltonian Graphs: 

Concept: A graph G is said to be Hamiltonian if there exist a cycle 

containing every vertex of G. Such a cycle is referred to as Hamiltonian 

cycle. Thus, a Hamiltonian graph is a graph containing a Hamiltonian 

cycle. 

 

Hamiltonian path is a simple path that contains all the vertices of G but 

where the end points may be distinct. 

 

A graph is a Hamiltonian if its underlying simple graph is Hamiltonian. 

 

A Hamiltonian cycle always provide a Hamiltonian path upon deletion of 

any edge while a Hamiltonian path may not lead to a Hamiltonian cycle 

(which depends upon whether or not the end points of the path happen to 

be joined by an edge in the graph). 

 

For example, the graph in figure 13.10 is Hamiltonian as we can find a 

Hamiltonian cycle by inspection i.e. by following the numbering and 

omitting the edge {     }. 
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Figure 13.10: Hamiltonian Graph 

There are some basic rules for constructing Hamiltonian paths and cycles 

which help to prove the existence or nonexistence of a Hamiltonian path 

and the basic idea behind this rules is that a Hamiltonian cycle must 

contains exactly two edges incident at each vertex and a Hamiltonian 

path must contain at least one of the edges. 

Rule 1: If G has n vertices, then a Hamiltonian path must contain exactly 

n – 1 edges, and a Hamiltonian cycle must contain exactly n edges. 

Rule 2: If a vertex v in G has degree k, then Hamiltonian path must 

contain at least one edge incident on v and at most two edges incident on 

v.  A Hamiltonian cycle will contain exactly two edges incident on v. 

Both edges incident on a vertex of degree two will be contained in every 

Hamiltonian cycle. It implies that there cannot be three or more edges 

incident with one vertex in a Hamiltonian cycle. 

Rule 3: No cycle that does not contain all the vertices of G can be 

formed when building a Hamiltonian path or cycle. 

Rule 4: Once the Hamiltonian cycle has passed through a vertex v on its 

construction, then all other unused edges incident on v can be deleted 

because only two edges incident on v can be included in Hamiltonian 

cycle.  

 

Example: In the below figure 13.11, the path through the vertices of    

in the order of appearance in the English alphabets forms a Hamiltonian 

path.    has no Hamiltonian cycle since if so, any Hamiltonian cycle 

must contains edges {a, b}, {a, e}, {c, d}, {d, e}, {f, g} and {e, g}. But 

then there would be three edges of a cycle incident on the vertex e.  

 

Similarly,    has neither a Hamiltonian path nor a cycle for following 

reasons: 

The vertex l has degree 5 so in that case three edges incident on l cannot 

be included in any Hamiltonian path. The same is true in the case of 

vertices h and j. There are 13 vertices of degree 3 and in particular, b, d, f 

and n are such that at least one of the three edges incident on each of 

these vertices cannot be included in a Hamiltonian path. Thus, atleast 9 + 

4 = 13 of the 27 edges of    cannot be included in any Hamiltonian path. 
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Hence there are not enough edges to form a Hamiltonian path on the 16 

vertices of   . Thus,    has no Hamiltonian path. 

 

 

 

 

 

Figure 13.11 

 

Check Your Progress 2 

1. What is Euler Graph? 

 

 

2. Enumerate the concept of connectedness. 

 

 

 

13.6 SUMMING UP 
 

Graph theory has got wide application in number of fields including 

computer science. It helps to represent structural model in Chemistry, 

Biology, Sociology, Operation Research, Computer Algorithm, 

Transport & Activity networks and Theory of Games.  

 

13.7 KEYWORDS 
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1. Vertex - "Vertex" is a synonym for a node of a graph, i.e., one of the 

points on which the graph is defined and which may be connected 

by graph edges. 

 

2. Edge - For an undirected graph, an unordered pair of nodes that 

specify a line joining these two nodes are said to form an edge. For a 

directed graph, the edge is an ordered pair of nodes 

 

3. A traceable graph is a graph that possesses a Hamiltonian path. 

 

4. Unilaterally - A digraph is unilaterally connected if for every pair of 

points there is a path from one to the other (but not necessarily the other 

way around) 

 

13.7 MODEL EXAMINATION QUESTION 
 

1. What is the largest possible number of vertices in a graph with 35 

edges and all vertices of degree at least 3? 

2. The graphs in the below figure are isomorphic. Discuss. 

 

3. Is it necessary that a plane graph G should contain a vertex of degree 

less than 5? 

4. Determine the faces of the planar graph and their corresponding edges. 
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5. Consider the graphs shown below. 

 

 

 

 

 

(a) Determine the closure of G. 

(b) Show that H is not Hamiltonian. 
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13.9 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. In a directed graph (v, v’) is said to be incident from v, and to be 

incident tov’. In a particular graph, the number of edges incident 

to a vertex is called the in-degree of the vertex and it is denoted 

by        ( ) 
  and the number of edges incident from it is 

called its out-degree and it is denoted by        ( ) 
 . ---13.1 

2. If two paths in a graph share no common vertices then they are 

known as vertex-disjoint & give example. ---13.1 

3. In a nondirected graph G a sequence P of zero or more edges of 

the form *     +, *     +,…,*       + also represented as 

(          ) is called a path from    to   ; where    is 

the initial vertex  ---13.1 

4. Provide the definition (a) --- 13.2.4 & (b) ---13.2.2 

5. Explain the concept–13.3 

6. Explain the concept–13.5 

7. Explain the concept–13.4.2 
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UNIT 14: GRAPH THEORY II 
 

STRUCTURE 

14.0 Objectives 

14.1 Concept & Terminology 

14.2 Ordered Rooted Tree 

14.3 Tree Traversal 

14.4 Spanning Trees 

14.5 Binary Search Tree 

14.6 Summing Up 

14.7 Keywords 

14.8 Question for review 

14.9 Suggested Readings 

14.10 Answer to check your progress 

 

14.0 OBJECTIVES 
 

 Concept and types of Trees 

14.1 CONCEPT: 
 

 A tree is a simple graph G such that there is a unique simple 

nondirected path between each pair of vertices of G. 

 A rooted tree is a tree in which there is one designated vertex, 

called a root. 

 A rooted tree is a directed tree if there is a root from which 

there is a directed path to each vertex. In such case there is 

exactly one such root. 

 The level of a vertex v in a rooted tree is the length of the path to 

v from the root. 

 A tree T with only one vertex is called a trivial tree; otherwise it 

is a nontrivial tree. 

Example: Two trees,    and    are shown in figure 7.12.    (    ) 

and    (    ) where  

  *                   + 
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   **   + *   + *   + *   + *   + *   + *   + *   + *   ++ and 

   **   + *   + *   + *   + *   + *   + *   + *   + *   ++ 

 

Figure 14.1: Two kinds of nondirected trees 

Neither of these trees is a directed tree. If vertex c is designated as the 

root of each tree, vertex j is at level 4 in    and at level 3 in  .  

Example: A directed tree T is shown in figure 7.13. 

  (   ) where   *               + and 

  *(   ) (   ) (   ) (   ) (   ) (   )  

(   )+. The root of T is the vertex a and the vertices at level 2 are e and f.  

 

 

 

 

 

Figure 14.2: A directed tree 

Concept: 

Two vertices suppose a and b of a graph are said to be connected if there 

is a nondirected path from a to b in G and then the graph G is connected 

if each pair of its vertices is connected. If we define a Relation R on the 

vertices of a graph G by     if a and b are connected then R is an 

equivalence relation. We can partitioned the vertices of G into disjoint 

nonempty sets            and the subgraphs            of G induced 
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by              , respectively are called the connected components of 

G or simply the components of G and it is generally denoted by C(G) and 

if C(G)=1 it implies G is connected. A connected subgraph H of a graph 

G is a component of G if for each connected subgraph F of G where 

 ⊆      ( ) ⊆  ( ) and  ( ) ⊆  ( ), then it follows that H = F. 

 

If a graph G is connected and e is an edge such that     is not 

connected, then e is said to be a bridge or a cut edge. If v is a vertex of G 

such that     is not connected, then v is a cut vertex. 

Example: Let G be the graph depicted in figure 7.11. This graph G has 3 

components; the vertices a and d are connected as are i and g and j and k 

are not connected. Moreover, c is a cut vertex of the first component. 

 

THEOREM: A simple non-directed graph G is a tree if G is connected 

and contains no cycles. 

 

PROOF: Suppose that G is a tree. Since each pair of vertices are joined 

by a path, G is connected. If G contains a cycle containing distinct 

vertices u and v, then u and v are joined by at least two simple paths, the 

one along one portion of the cycle and the other part completing the 

cycle. The above discussion contradicts the hypothesis which states that 

there is a unique path between u and v, and thus a tree has no cycles. 

Conversely, assume that G is connected and contains no cycles. Let a 

and b be any pair of vertices of G. If there are two different simple paths, 

   and    from a to b, then we can find cycle in G as follows: 

Since    and    are different paths there must be a vertex    (like    

 ) on both paths such that the vertex following    on    is not the same 

as the vertex following    on   . Since    and    terminate at b, there is 

a first vertex after   , call its   , which    and    have common 

(possibly     ). Thus, the part of    from    to    form a cycle in G. 

This contradicts the assumption that G has no cycles. Therefore, G has 

exactly one path joining a and b. 

 

THEOREM: In every nontrivial tree there is at least one vertex of 

degree one. 
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PROOF: Let us start at any vertex say   . If    (  ) ≠  , move along 

any edge to vertex    incident with   . If    (  ) ≠   continue to vertex 

   along a different edge and continue it to produces a path       

       ( it indicates that there is an edge from    to   , one from    

to    and so on.) None of the      is repeated in this path since then we 

would have circuit – which a tree may not have. Since the number of 

vertices in the graph is finite, the graph must end somewhere and there 

should be a vertex of degree 1 as we can enter this vertex but cannot 

leave it. 

THEOREM: A tree with n vertices has exactly n – 1 edges. 

 

PROOF: We will use mathematical induction on the number of vertices. 

If n = 1, there are no edges. Hence, the result is trivial for n = 1. Assume, 

then, for     that all the trees with n vertices have exactly n – 1. Now 

consider an arbitrary tree with n + 1 edges. With reference to the 

previous theorem, there is a vertex v in T of degree 1. Let us consider the 

figure 7.14 where let us prune this tree by removing this vertex v and its 

associated edge e from T and consider it as       . 

 

 

 

 

 

Figure 14.3 

T‘ has n vertices and one edge less than T. Also T‘ is connected as for 

any pair of vertices say a and b in T‘, there is a unique simple path from 

a to b in T and this path is not affected by the removal of the vertex v and 

edge e. There are no cycles in T‘ as there were none in T. Thus, T‘ is a 

tree and inductive hypothesis implies that it has n – 1 edges and so T 

must have n edges as it has one more edge as compare to T‘. 
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COROLLARY: If G is a nontrivial tree then G contains at least two 

vertices of degree 1. 

PROOF: Let n be the number of vertices of graph G. By the sum of 

degrees formula, 

∑   (  )   | |   (   )  (    )

 

   

 

Now if there is only one vertex, say   , of degree 1, then 

   (  )     for         

And ∑    (  )
 
      ∑    (  )              

    

But then  

                                   

 

Example: There are 6 non-isomorphic trees with 6 vertices as depicted 

in Figure 7.15 as below. 

 

 

Figure 14.4 The trees of 6 vertices 

THEOREM: If 2 non adjacent vertices of a tree T are connected by 

adding an edge, then the resulting graph will contain a cycle. 

 

PROOF: If T has n- vertices then T has n – 1 edges and if additional 

edge is added to the edges of T the resulting graph G has n vertices and n 

edges. Hence G cannot be a tree by previous theorem. In case, if the 

addition of an edge has not affected the connectivity. Hence G must have 

cycle. 

Example: As shown in below figure 7.16 if any of the dotted line is 

added to  the tree it will create a cycle. 
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Figure 14.5 

THEOREM: A graph G is a tree if and only if G has no cycles and 

| |  | |   . 

 

PROOF: We are interested to show that if G has no cycles and | |  

| |    , then G is connected. Let us consider the components of the G 

and denote it by            where    . Assume |  |= the number of 

vertices of   . Now each    is a tree which contains no cycles and hence 

they are connected. Thus,   has |  |    edges .Hence  G has (|  |  

 )  (|  |   )    (|  |   )  |  |  |  |    |  |    | |  

  edges. Thus, k = 1, and G is connected. 

14.2 ORDERED ROOTED TREES: 
 

An ordered rooted tree is a rooted tree wherethe children of each internal 

vertex are ordered. For example, in an ordered binary tree (just called 

binary tree), if an internal vertex has twochildren, 

− the first child is called the left child and thesecond is called the right 

child. 

− the tree rooted at the left child is called the leftsubtree, and at the right 

child, the right subtree 

 

[NOTE: Ordered rooted trees can be defined recursively.] 

Example: 

 

a 
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b    c 

 

 

d   e   f   g 

 

 

h   i        j 

 

 

k   l 

 

Figure: 14.6: Ordered Rooted Tree 

In the above ordered rooted tree, we observe the following things: 

o b is the left child of vertex a 

o c is the right child of vertex a 

o {e, j} is the right subtree of the vertex b 

o {d, h, i, k, l} is the left subtree of the vertex b 

 

Check Your Progress 1: 

1. What is rooted tree? 

 

 

2. Explain directed tree. 

 

 

 

14.3 TREE TRAVERSAL: 
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Procedures for systematically visiting every vertex of an ordered rooted 

tree are called traversal algorithms. 

 

a. Pre-order traversal: 

Let T be an ordered rooted tree with root r. If T consists only 

of r, then r is the preorder traversal of T. Otherwise, suppose that 

          are the subtrees at r from left to right in T. The preorder 

traversal begins by visiting r. It continues by traversing    in 

preorder, then    in preorder, and so on, until    is traversed in 

preorder. 

 

 

 

 

 

 

 

 

 

Figure 14.7: Pre-order Traversal 

b. Inorder traversal 

Let T be an ordered rootedtree with root r.If T consists only of r, 

then r isthe inorder traversal of T.Otherwise, suppose that 

          are the subtrees at rfrom left to right. The 

inordertraversal begins by traversingvisiting    in inorder, 

thenvisiting r. It continues bytraversing    in inorder, then   in 

inorder, …, and finally   in inorder. 
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Figure 14.8: Inorder Traversal 

c. Postorder Traversal: 

 

Let T be an ordered rootedtree with root r.If T consists only 

of r, then r isthe postorder traversal of T.Otherwise, suppose that 

          are the subtrees at rfrom left to right. The 

postordertraversal begins by traversing  in postorder, then 

  inpostorder, …, then   inpostorder, and ends byvisiting r. 

 

 

 

 

 

 

Figure 14.9: Post order Traversal 

Example: In the below figure 14.10 

 

 

 

 

 

 

 

Preorder: a, b, e, j, k, n, o, p, f, c, d, g, l, m, h, I  

Inorder: j, e, n, k, o, p, b, f, a, c, l, g, m, d, h, i 

Postorder: j, n, o, p, k, e, f,b, c, l, m, g, h, i, d, a 

 

14.4 SPANNING TREES: 
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Concept: A subgraph H of a graph G is called a spanning tree of G if  

(i) H is a tree 

(ii) H contains all the vertices of G. 

A spanning tree that is a directed tree is called a directed spanning tree 

of G. 

 

Example: Consider the graph G in Figure 7.22 (a) and let this graph 

represents a communication network in which vertices resembles the 

stations and edges resembles the communication links. Now we need to 

find out the largest number of edges that can be deleted while still 

allowing the station to communicate with each other.  

After close observation, the cycle         gives two ways for d 

and e to communicate. Along the path       or directly from d to e. 

If the edge {d, e} is deleted, d and e can still communicate via c. One 

edge of each cycle in G can be deleted and the leftover edges are 

sufficient to maintain communication between all stations. This is 

depicted in figure 7.22 (b) and the result is the spanning tree for the 

graph of figure 7.22 (a). We can obtain other spanning tree by deleting 

another sequence of edges to eliminate cycles. The graph G has 15 edges 

and the spanning tree for G has 10 edges so 5 edges have to be deleted.  

In general, if a graph G is connected graph with n vertices and m edges, a 

spanning tree of G must have n – 1 edges. Hence, the number of edges 

that must be removed before a spanning tree is obtained must be 

  (   )        which is also called as circuit rank of graph 

G. 

Figure 14.11 
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THEOREM: A non-directed graph G is connected if and only if G 

contains a spanning tree. Indeed if we successively delete edges of cycles 

until no further cycles remain, then the result is the spanning tree of G. 

 

PROOF: If G has a spanning tree T, there is a path between any pair of 

vertices in G along the tree T. Thus G is connected. 

We can prove it conversely that a connected graph G has a spanning tree 

by mathematical induction on the number k of the cycles in G. If k = 0, 

then G is connected with no cycles and hence G is a tree. Now let us 

assume that all connected graphs with fewer than k cycles have a 

spanning tree. Now consider that G is connected graph with k cycles.  

Remove an edge e from one of the cycles. Then G – e is still connected 

and has a spanning tree for G by the inductive hypothesis because G – e 

has fewer cycles than G. But since G – e has all vertices of G, the 

spanning tree for G – e is also one for G and the results followed by 

mathematical induction. 

 

Concepts: Let T be a rooted tree with designated root   . Suppose that u 

and v are vertices in T and that            is a simple path in T. 

Then  

i.      is the parent of    

ii.              are the ancestor of    

iii.    is the child of      

iv. If u is an ancestor of v, then v is descendant of u 

v. If u has no children, then u is a leaf of T 

vi. If v is not a leaf of T, then v is an internal vertex of T 

vii. The subgraph of T consisting of v and all its descendants, 

with v designated as a root, is the subtree of T rooted at v. 

 

Example: Refer the figure 7.23,  if a is designated as the root,  

then b, d, f, h and j are leaves of T, 

 i is the parent of h and j; 

f, h, i and j are descendants of g; 

a and c are the ancestors of e; 

and the children of c are b, d and e. 
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also the vertices a, c, e, g and i are the internal vertices to the tree rooted 

at a. 

Incase if we consider c as a root, then a becomes a leaf, and c is the 

parent of a. 

 

Figure 14.12 

Minimal Spanning Trees: 

Consider the collection of k cities, and we wish to construct a 

transportation network connecting all the cities and also assume that the 

cost of building links between each pair of cities is known and we wish 

to construct it as cheaply as possible. 

We can represent the desired network with the help of graph by 

considering each city as a vertex and placing an edge between vertices if 

a link runs between the two corresponding cities. If the cost for 

constructing a link between cities say    and   , the weights like     can 

be assigned to the edge *     +. So the main issue is to design such 

network at minimum cost of construction. If M is the graph of a network 

with minimal cost , it is essential that M be connected for all cities are to 

be connected by links. Also there would not be any circuit in the graph 

M, otherwise we can remove an edge from a circuit and thereby reduce 

the total cost by the cost of construction of that edge. Hence the graph of 

minimal cost M must be a spanning tree of the k vertices. 

We can state the above problem in general terms as follows: 

Let G be the graph of all possible links between the cities with the non-

negative cost of construction C(e) assigned to each edge e in G. Then if 

H is any subgraph of G with edges         the total cost of constructing 
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the network H is  ( )  ∑  (  )
 
   . A spanning tree T where C(T) is 

minimal is called minimal spanning tree.  

 

Minimum (or Maximum) Weight Spanning 

Trees 

Definition : A weighted graph is a finite graph without loops, G = (V, E, 

st), together with a function, c: E → R, called a weight function (or cost 

function). We will denote a weighted graph by (G, c). Given any set of 

edges, E ⊆ E, we define the weight (or 

cost) of E by 

 

Given a weighted graph, (G, c), an important problem is to find a 

spanning tree, T such that c(T ) is maximum (or minimum). This problem 

is called the maximal weight spanning tree (resp. minimal weight 

spanning tree). Actually, it is easy to see that any algorithm solving any 

one of the two problems can be converted to an algorithm solving the 

other problem. For example, if we can solve the maximal weight 

spanning tree, we can solve the mimimal weight spanning tree by 

replacing every weight, c(e), by −c(e), and by looking for a spanning 

tree, T , that is a maximal spanning tree, since 
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Since every spannning tree of a given graph, G = (V, E, st), has the same 

number of edges (namely, |V |−1), adding the same constant to the 

weight of every edge does not affect the maximal nature a spanning tree, 

that is, the set of maximal weight spanning trees is preserved. Therefore, 

we may assume that all the weights are non-negative. 

 

 

 

In order to justify the correctness of Kruskal‘s algorithm, we need two 

definitions. Let G = (V, E, st) be any connected weighted graph and let T 

be any spanning tree of G. For every edge, e ∈ E − T , let Ce be the set of 

edges belonging to the unique chain joining the endpoints of e (the 

vertices in st(e)). For example, in the graph shown in above Figure. 

the set C{8,11} associated with the edge {8, 11} (shown as a dashed line) 

corresponds to the following set of edges (shown as dotted lines) in T : 

 

Also, given any edge, e ∈ T , observe that the result of deleting e yields a 

graph denoted 

T − e consisting of two disjoint subtrees of T . We let Ωe be the set of 

edges, e ∈ G − T , 

such that if st(e) = {u, v}, then u and v belong to the two distinct 

connected components of T − {e}. For example, in above figure, deleting 

the edge {5, 9} yields the set of edges (shown as dotted lines) 

 

 

 

14.5 BINARY SEARCH TREE 
 

Binary search trees have the property that the node to the left contains a 

smaller value than the node pointing to it and the node to the right 

contains a larger value than the node pointing to it. 

It is not necessary that a node in a 'Binary Search Tree' point to the nodes 

whose value immediately precede and follow it. 
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Example: The tree shown in fig is a binary search tree 

 

 

 

 

 

 

 

 

 

 

 

Inserting into a Binary Search Tree: Consider a binary tree T, and 

suppose we have given an ITEM of information to insert in T. The ITEM 

is inserted as a leaf in the tree. The following steps explain a procedure 

to insert an ITEM in the binary search tree T. 

1. Compare the ITEM with the root node. 

2. If ITEM > ROOT NODE, proceed to the right child, and it 

becomes a root node for the right subtree. 

3. If ITEM < ROOT NODE, proceed to the left child. 

4. Repeat the above steps until we meet a node which has no left 

and right subtree. 

5. Now if the ITEM is greater than the node, then the ITEM is 

inserted as the right child, and if the ITEM is less than the node, 

then the ITEM is inserted as the left child. 

6.  

Example: Show the binary search tree after inserting 3, 1,4,6,9,2,5,7 into 

an initially empty binary search tree. 

Solution: The insertion of the above nodes in the empty binary search 

tree is shown in fig: 
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Deletion in a Binary Search Tree: Consider a binary tree T. Suppose 

we want to delete a given ITEM from binary search tree. To delete an 

ITEM from a binary search tree we have three cases, depending upon the 

number of children of the deleted node. 

1. Deleted Node has no children: Deleting a node which has no 

children is very simple, as replace the node with null. 

2. Deleted Node has Only one child: Replace the value of a deleted 

node with the only child. 

3. Deletion node has only two children: In this case, replace the 

deleted node with the node that is closest in the value to the deleted 

node. To find the nearest value, we move once to the left and then to 

the right as far as possible. This node is called the immediate 

predecessor. Now replace the value of the deleted node with the 

immediate predecessor and then delete the replaced node by using 

case1 or case2. 

 

Example: Show that the binary tree shown in fig (viii) after deleting the 

root node. 

 

Solution: To delete the root node, first replace the root node with the 

closest elements of the root. For this, first, move one step left and then to 
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the right as far as possible to the node. Then delete the replaced node. 

The tree after deletion shown in fig: 

 

 

 

 

 

 

 

 

 

 

Check Your Progress 2: 

1. Explain tree traversal. 

 

 

2. Explain deletion in binary search tree 

 

 

3. What is minimal spanning tree? 

 

 

 

14.6 SUMMING UP 
 

Graph theory has got wide application in number of fields including 

computer science. It helps to represent structural model in Chemistry, 
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Biology, Sociology, Operation Research, Computer Algorithm, 

Transport & Activity networks and Theory of Games.  

 

14. 7 KEYWORDS 
 

1. Adjacent: Two vertices are adjacent if they are connected by an edge. 

2. Arc: A synonym for edge 

3. Complete graph: A complete graph with n vertices (denoted Kn) is a 

graph with n vertices in which each vertex is connected to each of the 

others 

4. Degree: The degree (or valence) of a vertex is the number of 

edge ends at that vertex. For example, in this graph all of the vertices 

have degree three. 

14.8 QUESTIONS FOR REVIEW 
 

1. Let G be a graph with k components, where each component is a tree. 

Obtain a formula for |E| in terms of |V| and k 

 

2. A forest is a simple graph with no circuits. Show that the connected 

components of a forest are trees. 

3. Draw a binary tree to represent ((a-b)  c) + (d/e)v 

4. Use a binary tree to sort the following list of numbers 

15,   7,   24,   11,   27,   13,   18,   19,   9 . 

We note that when a binary tree is used to sort a list, the in order 

traversal will be automatically assumed in this unit. 
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14.10 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. A rooted tree is a tree in which there is one designated vertex, called 

a root. 

---14.1 

2. A rooted tree is a directed tree if there is a root from which there is 

a directed path to each vertex. In such case there is exactly one such 

root.---14.1 

3. Explain the concept---14.3 

4. Explain deletion of spanning tree with steps --- 14.5 

5. Explain the concept–14.4. 


